In this paper we present an operational computer vision system for real-time motion detection and recording that can be used in surveillance system. The system captures a video of a scene and identifies the frames that contains motion and record them in such a way that only the frames that is important to us is recorded and a report is made in the form of a movie is made and can be displayed. All parts that are captured by the camera are recorded to compare both movies. This serves as both a proof-of- concept and a verification of other existing algorithms for motion detection. Motion frames are detected using frame differencing. The results of the experiments with the system indicate the ability to minimize some of the problems false detection and missed detections (like in a sudden change of light in the scene). The software part is written in Matlab language as an M-file and using the Simulink library, the hardware part we used a Pentium 4 computer with a web camera or a laptop integrated camera.
The oscillation property of the second order half linear dynamic equation was studied, some sufficient conditions were obtained to ensure the oscillation of all solutions of the equation. The results are supported by illustrative examples.
This paper aims to introduce a concept of an equilibrium point of a dynamical system which will call it almost global asymptotically stable. We also propose and analyze a prey-predator model with a suggested function growth in prey species. Firstly the existence and local stability of all its equilibria are studied. After that the model is extended to an optimal control problem to obtain an optimal harvesting strategy. The discrete time version of Pontryagin's maximum principle is applied to solve the optimality problem. The characterization of the optimal harvesting variable and the adjoint variables are derived. Finally these theoretical results are demonstrated with numerical simulations.
Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show MoreIn this article, a continuous terminal sliding mode control algorithm is proposed for servo motor systems. A novel full-order terminal sliding mode surface is proposed based on the bilimit homogeneous property, such that the sliding motion is finite-time stable independent of the system’s initial condition. A new continuous terminal sliding mode control algorithm is proposed to guarantee that the system states reach the sliding surface in finitetime. Not only the robustness is guaranteed by the proposed controller but also the continuity makes the control algorithm more suitable for the servo mechanical systems. Finally, a numerical example is presented to depict the advantages of the proposed control algorithm. An application in the rota
... Show MoreModeling the microclimate of a greenhouse located in Baghdad under its weather conditions to calculate the heating and cooling loads by computer simulation. Solar collectors with a V-corrugated absorber plate and an auxiliary heat source were used as a heating system. A rotary silica gel desiccant dehumidifier, a sensible heat exchanger, and an evaporative cooler were added to the collectors to form an open-cycle solar assisted desiccant cooling system. A dynamic model was adopted to predict the inside air and the soil surface temperatures of the greenhouse. These temperatures are used to predict the greenhouse heating and cooling loads through an energy balance method which takes into account the soil heat gain. This is not included in
... Show MoreDeveloped countries are facing many challenges to convert large areas of existing services to electronic modes, reflecting the current nature of workflow and the equipment utilized for achieving such services. For instance, electricity bill collection still tend to be based on traditional approaches (paper-based and relying on human interaction) making them comparatively time-consuming and prone to human error.
This research aims to recognize numbers in mechanical electricity meters and convert them to digital figures utilizing Optical Character Recognition (OCR) in Matlab. The research utilized the location of red region in color electricity meters image to determine the crop region that contain the meters numbers, then
... Show MoreThe study consists of video clips of all cars parked in the selected area. The studied camera height is1.5 m, and the video clips are 18video clips. Images are extracted from the video clip to be used for training data for the cascade method. Cascade classification is used to detect license plates after the training step. Viola-jones algorithm was applied to the output of the cascade data for camera height (1.5m). The accuracy was calculated for all data with different weather conditions and local time recoding in two ways. The first used the detection of the car plate based on the video clip, and the accuracy was 100%. The second is using the clipped images stored in the positive file, based on the training file (XML file), where the ac
... Show MoreSkin cancer is the most serious health problems in the globe because of its high occurrence compared to other types of cancer. Melanoma and non-melanoma are the two most common kinds of skin cancer. One of the most difficult problems in medical image processing is the automatic detection of skin cancer. Skin melanoma is classified as either benign or malignant based on the results of this test. Impediment due to artifacts in dermoscopic images impacts the analytic activity and decreases the precision level. In this research work, an automatic technique including segmentation and classification is proposed. Initially, pre-processing technique called DullRazor tool is used for hair removal process and semi-supervised mean-shift
... Show MoreHuman action recognition has gained popularity because of its wide applicability, such as in patient monitoring systems, surveillance systems, and a wide diversity of systems that contain interactions between people and electrical devices, including human computer interfaces. The proposed method includes sequential stages of object segmentation, feature extraction, action detection and then action recognition. Effective results of human actions using different features of unconstrained videos was a challenging task due to camera motion, cluttered background, occlusions, complexity of human movements, and variety of same actions performed by distinct subjects. Thus, the proposed method overcomes such problems by using the fusion of featur
... Show MoreIn computer vision, visual object tracking is a significant task for monitoring
applications. Tracking of object type is a matching trouble. In object tracking, one
main difficulty is to select features and build models which are convenient for
distinguishing and tracing the target. The suggested system for continuous features
descriptor and matching in video has three steps. Firstly, apply wavelet transform on
image using Haar filter. Secondly interest points were detected from wavelet image
using features from accelerated segment test (FAST) corner detection. Thirdly those
points were descripted using Speeded Up Robust Features (SURF). The algorithm
of Speeded Up Robust Features (SURF) has been employed and impl