The researcher [1-10] proposed a method for computing the numerical solution to quasi-linear parabolic p.d.e.s using a Chebyshev method. The purpose of this paper is to extend the method to problems with mixed boundary conditions. An error analysis for the linear problem is given and a global element Chebyshev method is described. A comparison of various chebyshev methods is made by applying them to two-point eigenproblems. It is shown by analysis and numerical examples that the approach used to derive the generalized Chebyshev method is comparable, in terms of the accuracy obtained, with existing Chebyshev methods.
Gravity and magnetic data were used to study the deep crustal structures in Karbala and surrounding areas in central Iraq. The space window method was used to separate the residual from regional anomalies of gravity and magnetic data, the spaces of window are equal to 48,36 and 24 km. The Total Horizontal Derivative (THD) techniques and local wavenumber of gravity and magnetic are used to identify the faults and their trends with the basement rocks. The N45W, N45E, N-S and rarely E-W trends of faults are detected in the basement rock. It is believed that some of these faults extending from the basement to the uppermost layer of the sedimentary rocks.
The aim of this paper is to study the combined effects of the concentration and the thermo-diffusion on the unsteady oscillation flow of an incompressible Carreau fluid through an inclined porous channel. The temperature is assumed to affect exponentially the fluid's viscosity. We studied fluid flow in an inclined channel under the non-slip condition at the wall. We used the perturbation series method to solve the nonlinear partial differential equations. Numerical results were obtained for velocity distribution, and through the graphs, it was found that the velocity of fluid has a direct relation with Soret number, Peclet number, and Grashof number, while it has a reverse variation with chemical reaction, Schmidt number, frequency of os
... Show MoreMathematical integration techniques rely on mathematical relationships such as addition, subtraction, division, and subtraction to merge images with different resolutions to achieve the best effect of the merger. In this study, a simulation is adopted to correct the geometric and radiometric distortion of satellite images based on mathematical integration techniques, including Brovey Transform (BT), Color Normalization Transform (CNT), and Multiplicative Model (MM). Also, interpolation methods, namely the nearest neighborhood, Bi-linear, and Bi-cubic were adapted to the images captured by an optical camera. The evaluation of images resulting from the integration process was performed using several types of measures; the first type depend
... Show MoreTransformation and many other substitution methods have been used to solve non-linear differential fractional equations. In this present work, the homotopy perturbation method to solve the non-linear differential fractional equation with the help of He’s Polynomials is provided as the transformation plays an essential role in solving differential linear and non-linear equations. Here is the α-Sumudu technique to find the relevant results of the gas dynamics equation in fractional order. To calculate the non-linear fractional gas dynamical problem, a consumer method created on the new homotopy perturbation a-Sumudu transformation method (HP TM) is suggested. In the Caputo type, the derivative is evaluated. a-Sumudu homotopy pe
... Show MoreEnhanced Thematic Mapper Plus (ETM+) onboard the Landsat-7 remotely sensor satellite was launched on 15 April 1999. On May 31, 2003, image acquisition via the ETM+ was greatly impacted by the failure of the system’s Scan Line Corrector (SLC). Consequently, the ETM+ has lost approximately 22% of the data due to the increased scan gap. In this work, several gap-filling methods will be proposed to restore the ETM+ image malfunctions. Some of the proposed methods will be carried by estimating the missed pixel’s values from the same image pixel’s neighborhood, while others will utilize the pixel values extracted from different temporal scene acquired in different time. Mean average filter, median filter, midpoint filter, and several int
... Show MoreThis paper demonstrates a new technique based on a combined form of the new transform method with homotopy perturbation method to find the suitable accurate solution of autonomous Equations with initial condition. This technique is called the transform homotopy perturbation method (THPM). It can be used to solve the problems without resorting to the frequency domain.The implementation of the suggested method demonstrates the usefulness in finding exact solution for linear and nonlinear problems. The practical results show the efficiency and reliability of technique and easier implemented than HPM in finding exact solutions.Finally, all algorithms in this paper implemented in MATLAB version 7.12.
In this research article, an Iterative Decomposition Method is applied to approximate linear and non-linear fractional delay differential equation. The method was used to express the solution of a Fractional delay differential equation in the form of a convergent series of infinite terms which can be effortlessly computable.
The method requires neither discretization nor linearization. Solutions obtained for some test problems using the proposed method were compared with those obtained from some methods and the exact solutions. The outcomes showed the proposed approach is more efficient and correct.
In this paper, some new types of regularity axioms, namely pairwise quasi-regular, pairwise semi-regular, pairwise pseudo regular and pairwise regular are defined and studied in both ech fuzzy soft bi-closure spaces ( bicsp’s) and their induced fuzzy soft bitopological spaces. We also study the relationships between them. We show that in all these types of axioms, the hereditary property is satisfied under closed fs bi-csubsp of . Furthermore, we define some normality axioms, namely pairwise semi-normal, pairwise pseudo normal, pairwise normal and pairwise completely normal in both bicsp’s and their induced fuzzy soft bitopological spaces, as well as their basic properties and the relationships between them are studied.
... Show MoreLet M be an R-module, where R is commutative ring with unity. In this paper we study the behavior of strongly hollow and quasi hollow submodule in the class of strongly comultiplication modules. Beside this we give the relationships between strongly hollow and quasi hollow submodules with V-coprime, coprime, bi-hollow submodules.
يتكون الانحدار المقسم من عدة أقسام تفصل بينها نقاط انتماء مختلفة، فتظهر حالة عدم التجانس الناشئة من عملية فصل الأقسام ضمن عينة البحث. ويهتم هذا البحث في تقدير موقع نقطة التغيير بين الأقسام وتقدير معلمات الأنموذج، واقتراح طريقة تقدير حصينة ومقارنتها مع بعض الطرائق المستعملة في الانحدار الخطي المقسم. وقد تم استعمال أحد الطرائق التقليدية (طريقة Muggeo) لإيجاد مقدرات الإمكان الأعظم بالأسلوب الت
... Show More