This dissertation depends on study of the topological structure in graph theory as well as introduce some concerning concepts, and generalization them into new topological spaces constructed using elements of graph. Thus, it is required presenting some theorems, propositions, and corollaries that are available in resources and proof which are not available. Moreover, studying some relationships between many concepts and examining their equivalence property like locally connectedness, convexity, intervals, and compactness. In addition, introducing the concepts of weaker separation axioms in α-topological spaces than the standard once like, α-feebly Hausdorff, α-feebly regular, and α-feebly normal and studying their properties. Furthermore, providing the necessary condition for α-feebly normality property to become hereditary. Also, using a new topological model for graphs are the edges represented as points which enables us to express in a topological language about combinatorial concepts. Moreover, showing that an α-connected orderable spaces are exactly α-topologized graphs. Finally, realizing the relationship between the α-topology on the vertex set and the once on the whole space by α-feebly regularity property.
Research studies show that urban green spaces promote physical activity, the health of urban residents, and psychological well-being. Taking the community park in Duhok city as the research object, the spatial service area in terms of accessibility of to the Community Park under the mode of pedestrian transportation is analyzed by using the network analysis service area function of the geographic information system (GIS). The results show that under the walking mode in the research area, Parks are concentrated in the north and south of the city, but community parks are few in disadvantaged neighborhoods. In addition, there is a significant disparity between the number of community parks and the number of communities. Only 11 communities
... Show MoreSufficient conditions for boundary controllability of nonlinear system in quasi-Banach spaces are established. The results are obtained by using the strongly continuous semigroup theory and some techniques of nonlinear functional analysis, such as, fixed point theorem and quasi-Banach contraction principle theorem. Moreover, we given an example which is provided to illustrate the theory.
In this paper, we will study a concepts of sectional intuitionistic fuzzy continuous and prove the schauder fixed point theorem in intuitionistic fuzzy metric space as a generalization of fuzzy metric space and prove a nother version of schauder fixed point theorem in intuitionistic fuzzy metric space as a generalization to the other types of fixed point theorems in intuitionistic fuzzy metric space considered by other researchers, as well as, to the usual intuitionistic fuzzy metric space.
<p>In this paper, we prove there exists a coupled fixed point for a set- valued contraction mapping defined on X× X , where X is incomplete ordered G-metric. Also, we prove the existence of a unique fixed point for single valued mapping with respect to implicit condition defined on a complete G- metric.</p>
In this paper mildly-regular topological space was introduced via the concept of mildly g-open sets. Many properties of mildly - regular space are investigated and the interactions between mildly-regular space and certain types of topological spaces are considered. Also the concept of strong mildly-regular space was introduced and a main theorem on this space was proved.
A submoduleA of amodule M is said to be strongly pure , if for each finite subset {ai} in A , (equivalently, for each a ?A) there exists ahomomorphism f : M ?A such that f(ai) = ai, ?i(f(a)=a).A module M is said to be strongly F–regular if each submodule of M is strongly pure .The main purpose of this paper is to develop the properties of strongly F–regular modules and study modules with the property that the intersection of any two strongly pure submodules is strongly pure .
Let R1be a commutative2ring with identity and M be a unitary R-module. In this6work we7present almost pure8ideal (submodule) concept as a9generalization of pure10ideal (submodule). lso, we1generalize some9properties of8almost pure ideal (submodule). The 7study is almost regular6ring (R-module).
In this paper, we introduce a new type of functions in bitopological spaces, namely, (1,2)*-proper functions. Also, we study the basic properties and characterizations of these functions . One of the most important of equivalent definitions to the (1,2)*-proper functions is given by using (1,2)*-cluster points of filters . Moreover we define and study (1,2)*-perfect functions and (1,2)*-compact functions in bitopological spaces and we study the relation between (1,2)*-proper functions and each of (1,2)*-closed functions , (1,2)*-perfect functions and (1,2)*-compact functions and we give an example when the converse may not be true .
To demonstrate the effect of changing cavity length for FM mode locked on pulse parameters and make comparison for both dispersion regime , a plot for each pulse parameter as Lr function are presented for normal and anomalous dispersion regimes . The analysis is based on the theoretical study and the results of numerical simulation using MATLAB. The effect of both normal and anomalous dispersion regimes on output pulses is investigate Fiber length effects on pulse parameters are investigated by driving the modulator into different values. A numerical solution for model equations using fourth-fifth order, Runge-Kutta method is performed through MATLAB 7.0 program. Fiber length effect on pulse parameters is investigated by driving th
... Show More