This paper critically looks at the studies that investigated the Social Network Sites in the Arab region asking whether they made a practical addition to the field of information and communication sciences or not. The study tried to lift the ambiguity of the variety of names, as well as the most important theoretical and methodological approaches used by these studies highlighting its scientific limitations. The research discussed the most important concepts used by these studies such as Interactivity, Citizen Journalism, Public Sphere, and Social Capital and showed the problems of using them because each concept comes out of a specific view to these websites. The importation of these concepts from a cultural and social context to an Arab Islamic environment raises so many issues and problems.
In this review paper, several research studies were surveyed to assist future researchers to identify available techniques in the field of infectious disease modeling across complex networks. Infectious disease modelling is becoming increasingly important because of the microbes and viruses that threaten people’s lives and societies in all respects. It has long been a focus of research in many domains, including mathematical biology, physics, computer science, engineering, economics, and the social sciences, to properly represent and analyze spreading processes. This survey first presents a brief overview of previous literature and some graphs and equations to clarify the modeling in complex networks, the detection of societie
... Show MoreIn this work, enhancement to the fluorescence characteristics of laser dye solutions hosting highly-pure titanium dioxide nanoparticles as random gain media. This was achieved by coating two opposite sides of the cells containing these media with nanostructured thin films of highly-pure titanium dioxide. Two laser dyes; Rhodamine B and Coumarin 102, were used to prepare solutions in hexanol and methanol, respectively, as hosts for the nanoparticles. The nanoparticles and thin films were prepared by dc reactive magnetron sputtering technique. The enhancement was observed by the narrowing of fluorescence linewidth as well as by increasing the fluorescence intensity. These parameters were compared to those of the dye only and the dye solution
... Show MoreIn this article, it is interesting to estimate and derive the three parameters which contain two scales parameters and one shape parameter of a new mixture distribution for the singly type one censored data which is the branch of right censored sample. Then to define some special mathematical and statistical properties for this new mixture distribution which is considered one of the continuous distributions characterized by its flexibility. Next, using maximum likelihood estimator method for singly type one censored data based on the Newton-Raphson matrix procedure to find and estimate values of these three parameter by utilizing the real data taken from the National Center for Research and Treatment of Hematology/University of Mus
... Show MoreFace Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a
... Show MoreThe quality of Global Navigation Satellite Systems (GNSS) networks are considerably influenced by the configuration of the observed baselines. Where, this study aims to find an optimal configuration for GNSS baselines in terms of the number and distribution of baselines to improve the quality criteria of the GNSS networks. First order design problem (FOD) was applied in this research to optimize GNSS network baselines configuration, and based on sequential adjustment method to solve its objective functions.
FOD for optimum precision (FOD-p) was the proposed model which based on the design criteria of A-optimality and E-optimality. These design criteria were selected as objective functions of precision, whic
... Show MoreFace Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a
... Show MoreAn adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th
... Show MoreCorrect grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreOver the past few decades, the surveying fieldworks were usually carried out based on classical positioning methods for establishing horizontal and vertical geodetic networks. However, these conventional positioning techniques have many drawbacks such as time-consuming, too costly, and require massive effort. Thus, the Global Navigation Satellite System (GNSS) has been invented to fulfill the quickness, increase the accuracy, and overcome all the difficulties inherent in almost every surveying fieldwork. This research assesses the accuracy of local geodetic networks using different Global Navigation Satellite System (GNSS) techniques, such as Static, Precise Point Positioning, Post Processing Kinematic, Session method, a
... Show More