The rise of antibiotic-resistant bacteria necessitates the exploration of novel antimicrobial agents. Yttrium oxide nanoparticles (Y₂O₃) have shown potential due to their unique physicochemical properties and antibacterial activities against various pathogens. This study investigates the cytotoxic and antibacterial effects of Y₂O₃ nanoparticles against Serratia fonticuli and Citrobacter koseri, bacteria isolated from cholangitis patients. Bacterial strains were isolated from bile specimens and confirmed using standard microbiological techniques. The methods of X-ray diffraction (XRD), (SEM), and Frequency transform-infrared spectroscopic (FT-IR) were used to characterize YO₃ particles. Using a microdilution technique, the minimum concentrations of inhibition (MICS) were calculated for a variety of nanoparticles concentrations. MTT and LDH tests were used to evaluate mortality on cell lines derived from humans. Substantial antimicrobial activity was demonstrated by Y₂O₃ small particles, which efficiently broke down microbial cellular membranes and produced reactive oxygen molecules (ROS). At different doses, the MIC values showed strong suppression of both species of bacteria. Different reactions from cells of various types were shown by viability experiments, indicating that Y₂O₃ nanomaterials might be less harmful at particular dosages. Yttrium nanoparticles made of oxide show great promise as disinfectants versus cholangitis-causing microorganisms that are sensitive to antibiotics. In order to promote their use in hospitals, our work emphasizes the necessity of more research into the protective characteristics and mechanism for action of Y2O₃ particles.
Background: Celiac disease is an autoimmune chronic disease that affects the human’s intestine and subsequently reflects its effect on the entire body health by retardation the absorption and immune mediated complications cause the involvement of oral health. The present study intended to evaluate the impact of the histopathological disease activity upon dental enamel defects and dental caries.
Subjects and methods: Forty celiac-diseased patients aged 7-11 years were collected from 3 different teaching hospitals in Baghdad classified by means of the histopathological activity of the intestinal disease according to modified Marsh-Ros
... Show MoreThe formation and structural investigation of three new Mannich bases are reported. The synthesis of these compounds was accomplished via a multicomponent one-pot reaction using CaCl2 as a catalyst. The reaction of the benzaldehyde, m-bromoaniline and cyclohexanone or 4-methylcyclohexanone resulted in the formation of L1 and L3, respectively. The synthesis of L2 was achieved by mixing benzaldehyde, o-bromoaniline and cyclohexanone. The isolated compounds were characterised using a range of analytical and spectroscopic techniques. These include; NMR (1H and 13C-NMR), ESMS, FTIR, electronic spectroscopy, microanalyses and melting points. The NMR data for L1 and L2 indicated the presence of one isomer in solutions, on the NMR time scale. How
... Show MoreSome new cyclic imides are prepared by the reaction of ampicillin drug with different cyclic anhydrides as a first step to form amic acids for ampicillin drug. The second step includes the reaction of prepared amic acids with acetic anhydride and anhydrous sodium acetate with heating in THF as a solvent to give cyclic imide compounds. These compounds are identified by melting points, FT-IR, 1H-NMR, and biological activity
Metal (III) and (II) coordination compounds of o- phenylenediamine, oxalic acid dihydrate and 8-hydroxyquinoline were synthesized for mixed ligand complexes and characterized using FT-IR, UV-Vis and mass spectra, atomic absorption, elemental analysis, electric conductance and magnetic susceptibility measurements. In addition, thermal behavior (TGA) of the metal complexes (1-6) showed good agreement with the formula suggested from the analytical data. The stoichiometric reaction between the metal (III) and (II) ions with three various ligands in molar ratio at aqueous ethyl alchol for (1:1:1:1) (M: O-PDA: OA: 8-HQ) [where M = Cr+3, Mn+2, Co+2, Ni+2. Cu+2 and Zn+2; O-PDA = O-Phenylenediamine; OA = Oxalic acid and 8-HQ = 8-Hydroxyquinoline]. R
... Show MoreBackground: Isoxazoles are an important class of five-membered unsaturated heterocyclic compounds. They show several applications in diverse areas such as pharmaceuticals, agrochemistry and industry. Isoxazoles are also found in natural sources showing insecticidal, plant growth regulation and pigment functions. Current study was conducted for synthesis of twenty five new Isoxazole derivatives and to evaluate the in vitro antibacterial activities of these derivatives. Methods: Benzaldoxime and their substituted [I] ae were prepared via addition-elimination reactions between aromatic aldehyde and hydroxylamine hydrochloride. In a second step, para-or meta-substituted benzaldoximes [I] ae were reacted with N-chlorosucceinimide in DMF to yield
... Show MoreHematological malignancies remain one of the leading causes of death worldwide despite advances in cancer therapeutics. Newcastle disease virus (NDV) is a member of Paramyxoviridae that elicits considerable interest as an anticancer agent because it can replicate up to 10 000 times faster in human cancer cells than in most normal cancer cells. Several NDV strains reportedly induce the cytolysis of cancerous cell lines. The attenuated Iraqi strain (AMHA1) of NDV is a novel oncolytic agent with promising antitumor characteristics, including apoptosis induction. This study aimed to evaluate the ability of the AMHA1 NDV strain to induce apoptotic cell death in hematological tumors through caspase-dependent or independent apoptotic pathways. The
... Show MoreSilver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities. Capping agents are used for exhibiting a better antibacterial activity than uncapped Ag NPs. There are very few reports that have shown the usage of AgNPs for in-vivo antibacterial therapy. Citrate-capped silver nanoparticles were synthesized chemically by citrate reduction method; the size of Cit-AgNPs was determined by an atomic force microscope (AFM) and was between 15-90 nm. Acinetobacter baumannii (A. baumannii) isolates were the only sensitive species to Cit-AgNPs. MICs and MBC of Cit-AgNPs were determined by using A. baumannii. The results showed an additive effect of Cit-AgNPs. Four mice groups were infected with
... Show MoreThe present study was conducted to estimate the antimicrobial activity and the potential biological control of the killer toxin produced by