The prostaglandins inside inflamed tissues are produced by cyclooxygenase-2 (COX-2), making it an important target for improving anti-inflammatory medications over a long period. Adverse effects have been related to the traditional usage of non-steroidal anti-inflammatory drugs (NSAIDs) for the treatment of inflammation, mainly centered around gastrointestinal (GI) complications. The current research involves the creation of a virtual library of innovative molecules showing similar drug properties via a structure-based drug design. A library that includes five novel derivatives of Diclofenac was designed. Subsequently, molecular docking through the Glide module and determining the binding free energy implementing the Prime-MMGBSA module by the Schrödinger software package was used to identify compounds that showed marked specificity towards the COX-2 isoform. In addition, the ligands are subject to evaluation of their drug-like properties and ADMET (absorption, distribution, metabolism, excretion, and toxicity) characteristics using the QikProp module. Finally, molecular dynamics simulation has been calculated for the best molecule. The docking results indicated that all compounds own a predictive capability for specific binding to the COX-2 enzyme compared to the standard drug with a docking score range from -10.07 to -10.66 Kcal/mole, thus potentially overcoming the limitations imposed previously by the drugs currently used in clinical use. The ADMET analysis of the virtually active compounds demonstrated an acceptable drug-like profile and desirable pharmacokinetics properties. MM/GBSA calculation revealed that all the suggested compounds exhibited favorable free binding energies (-49.150 to - 60.185 Kcal/mole), indicating their strong potential to fit well into the COX-2 receptor. Finally, the MD simulation study revealed that compound 1 had perfect alignment with COX-2 receptor. The findings indicated that the compounds possess a predictive capability for specific binding to the COX-2 enzyme, thus potentially surmounting the restrictions imposed by the drugs currently employed in clinical use.
A system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.
Adsorption of lead ions from wastewater by native agricultural waste, precisely tea waste. After the activation and carbonization of tea waste, there was a substantial improvement in surface area and other physical characteristics which include density, bulk density, and porosity. FTIR analysis indicates that the functional groups in tea waste adsorbent are aromatic and carboxylic. It can be concluded that the tea waste could be a good sorbent for the removal of Lead ions from wastewater. Different dosages of the adsorbents were used in the batch studies. A random series of experiments indicated a removal degree efficiency of lead reaching (95 %) at 5 ppm optimum concentration, with adsorbents R2 =97.75% for tea. Three mo
... Show MoreThis study is aimed to Green-synthesize and characterize Al NPs from Clove (Syzygium aromaticum
L.) buds plant extract and to investigate their effect on isolated and characterized Salmonella enterica growth.
S. aromaticum buds aqueous extract was prepared from local market clove, then mixed with Aluminum nitrate
Al(NO3)3. 9 H2O, 99.9% in ¼ ratio for green-synthesizing of Al NPs. Color change was a primary confirmation
of Al NPs biosynthesis. The biosynthesized nanoparticles were identified and characterized by AFM, SEM,
EDX and UV–Visible spectrophotometer. AFM data recorded 122nm particles size and the surface roughness
RMs) of the pure S. aromaticum buds aqueous extract recorded 17.5nm particles s
In this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.
Acinetobacter baumannii received attention for its multi-drug resistant associated with many severe infections and outbreaks in clinical environment. The aims of the study are to investigate the antibiotic susceptibility profile of clinically isolated A. baumannii, biofilm production, and the efficiency of Low Frequency Ultrasound (LFU) and honey to attenuate biofilm production. A total of 100 samples were taken from different sources from Baghdad hospitals. The susceptibility patterns revealed the percentage of pan drug resistant (PDR) isolates were 1.5 %, 72.7 % were extended drug resistant (XDR), 16.7 % were multidrug resistant (MDR), and 9.1 % were non MDR and sensitive to most antibiotics used. The ability to form
... Show MoreExperimental work was carried out to investigate the effect of fire flame (high temperature) on specimens of one way slabs using Self Compacted Concrete (SCC). By using furnace manufactured for this purpose, twenty one reinforced concrete slab specimens were exposed to direct fire flame. All of specimens have the same dimensions. The slab specimens were cooled in two types, gradually by left them in the air and suddenly by using water. After that the specimens were tested under two point loads, to study, the effect of
different: temperature levels (300ºC, 500ºC and 700ºC), and cooling rate (gradually and sudden cooling conditions) on the concrete compressive strength, modulus of rupture, flexural strength and the behavior of reinf
The consumption of fossil fuels has caused many challenges, including environmental and climate damage, global warming, and rising energy costs, which has prompted seeking to substitute other alternative sources. The current study explored the microwave pyrolysis of Albizia branches to assess its potential to produce all forms of fuel (solid, liquid, gas), time savings, and effective thermal heat transfer. The impact of the critical parameters on the quantity and quality of the biofuel generation, including time, power levels, biomass weight, and particle size, were investigated. The results revealed that the best bio-oil production was 76% at a power level of 450 W and 20 g of biomass. Additionally, low power levels led to enhanced
... Show More