In this study, we present a new steganography method depend on quantizing the perceptual color spaces bands. Four perceptual color spaces are used to test the new method which is HSL, HSV, Lab and Luv, where different algorithms to calculate the last two-color spaces are used. The results reveal the validity of this method as a steganoic method and analysis for the effects of quantization and stegano process on the quality of the cover image and the quality of the perceptual color spaces bands are presented.
In this paper, by using the Banach fixed point theorem, we prove the existence and uniqueness theorem of a fractional Volterra integral equation in the space of Lebesgue integrable ð¿1(ð‘…+) on unbounded interval [0,∞).
Throughout this paper, a generic iteration algorithm for a finite family of total asymptotically quasi-nonexpansive maps in uniformly convex Banach space is suggested. As well as weak / strong convergence theorems of this algorithm to a common fixed point are established. Finally, illustrative numerical example by using Matlab is presented.
This paper is concerned with preliminary test single stage shrinkage estimators for the mean (q) of normal distribution with known variance s2 when a prior estimate (q0) of the actule value (q) is available, using specifying shrinkage weight factor y( ) as well as pre-test region (R). Expressions for the Bias, Mean Squared Error [MSE( )] and Relative Efficiency [R.Eff.( )] of proposed estimators are derived. Numerical results and conclusions are drawn about selection different constants including in these expressions. Comparisons between suggested estimators with respect to usual estimators in the sense of Relative Efficiency are given. Furthermore, comparisons with the earlier existi
... Show MoreIn this paper, some estimators for the unknown shape parameters and reliability function of Basic Gompertz distribution were obtained, such as Maximum likelihood estimator and some Bayesian estimators under Squared log error loss function by using Gamma and Jefferys priors. Monte-Carlo simulation was conducted to compare the performance of all estimates of the shape parameter and Reliability function, based on mean squared errors (MSE) and integrated mean squared errors (IMSE's), respectively. Finally, the discussion is provided to illustrate the results that are summarized in tables.
The estimation of the parameters of linear regression is based on the usual Least Square method, as this method is based on the estimation of several basic assumptions. Therefore, the accuracy of estimating the parameters of the model depends on the validity of these hypotheses. The most successful technique was the robust estimation method which is minimizing maximum likelihood estimator (MM-estimator) that proved its efficiency in this purpose. However, the use of the model becomes unrealistic and one of these assumptions is the uniformity of the variance and the normal distribution of the error. These assumptions are not achievable in the case of studying a specific problem that may include complex data of more than one model. To
... Show MoreThe intellectual property of digital documents has been protected by using many methods of digital watermarking. Digital documents have been so much of advantages over print documents. Digital documents are less expensive and easy to store, transport, and searched compared to traditional print documents. But it has its owner limitation too. A simple image editor can be used to modify and make a forged document. Digital documents can be tampered easily. In order to utilize the whole benefits of digital document, these limitations have to overcome these limitations by embedding some text, logo sequence that identifies the owner of the document..
In this research LSB technique has been used
... Show MoreThis paper deals with constructing mixed probability distribution from exponential with scale parameter (β) and also Gamma distribution with (2,β), and the mixed proportions are ( .first of all, the probability density function (p.d.f) and also cumulative distribution function (c.d.f) and also the reliability function are obtained. The parameters of mixed distribution, ( ,β) are estimated by three different methods, which are maximum likelihood, and Moments method,as well proposed method (Differential Least Square Method)(DLSM).The comparison is done using simulation procedure, and all the results are explained in tables.
In this article, the numerical and approximate solutions for the nonlinear differential equation systems, represented by the epidemic SIR model, are determined. The effective iterative methods, namely the Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM), and the Banach contraction method (BCM), are used to obtain the approximate solutions. The results showed many advantages over other iterative methods, such as Adomian decomposition method (ADM) and the variation iteration method (VIM) which were applied to the non-linear terms of the Adomian polynomial and the Lagrange multiplier, respectively. Furthermore, numerical solutions were obtained by using the fourth-orde Runge-Kutta (RK4), where the maximum remaining errors showed th
... Show MoreA reliability system of the multi-component stress-strength model R(s,k) will be considered in the present paper ,when the stress and strength are independent and non-identically distribution have the Exponentiated Family Distribution(FED) with the unknown shape parameter α and known scale parameter λ equal to two and parameter θ equal to three. Different estimation methods of R(s,k) were introduced corresponding to Maximum likelihood and Shrinkage estimators. Comparisons among the suggested estimators were prepared depending on simulation established on mean squared error (MSE) criteria.
This research aims to present some results for conceptions of quasi -hyponormal operator defined on Hilbert space . Signified by the -operator, together with some significant characteristics of this operator and various theorems pertaining to this operator are discussed, as well as, we discussed the null space and range of these kinds of operators.