Preferred Language
Articles
/
YhYD3YoBVTCNdQwCSKYC
Subject Review: Blogs as Learning Tools in EFL Classrooms
...Show More Authors

Blogs have emerged as a powerful technology tool for English as a Foreign Language (EFL) classrooms. This literature review aims to provide an overview of the use of blogs as learning tools in EFL classrooms. The study examines the benefits and challenges of using blogs for language learning and the different types of blogs that can be used for language learning. It provides suggestions for teachers interested in using blogs as learning tools in their EFL classrooms. The findings suggest that blogs are a valuable and effective tool for language learning, particularly in promoting collaboration, communication, and motivation.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Comparing the Random Forest vs. Extreme Gradient Boosting using Cuckoo Search Optimizer for Detecting Arabic Cyberbullying
...Show More Authors

   Cyberbullying is one of the major electronic problems, and it is not a new phenomenon. It was present in the traditional form before the emergence of social networks, and cyberbullying has many consequences, including emotional and physiological states such as depression and anxiety. Given the prevalence of this phenomenon and the importance of the topic in society and its negative impact on all age groups, especially adolescents, this work aims to build a model that detects cyberbullying in the comments on social media (Twitter) written in the Arabic language using Extreme Gradient Boosting (XGBoost) and Random Forest methods in building the models. After a series of pre-processing, we found that the accuracy of classification of t

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Sequential feature selection for heart disease detection using random forest
...Show More Authors

Heart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential f

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Tue Sep 25 2018
Journal Name
Iraqi Journal Of Science
Effect of Successive Convolution Layers to Detect Gender
...Show More Authors

Image classification can be defined as one of the most important tasks in the area of machine learning. Recently, deep neural networks, especially deep convolution networks, have participated greatly in end-to-end learning which reduce need for human designed features in the image recognition like Convolution Neural Network. It is offers the computation models which are made up of several processing layers for learning data representations with several abstraction levels. In this work, a pre-trained deep CNN is utilized according to some parameters like filter size, no of convolution, pooling, fully connected and type of activation function which includes 300 images for training and predict 100 image gender using probability measures. Re

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 13 2021
Journal Name
Iraqi Journal Of Science
The Use of Predictive Analyzes for University Dropout Cases
...Show More Authors

We will also derive practical solutions using predictive analytics. And this would include application making predictions with real world example from University of Faculty of Chariaa of Fez. As soon as student enrolled to the university, they will certainly encounter many difficulties and problems which discourage their motivation towards their courses and which pushes them to leave their university.
The aim of our article is to manage an investigation of the issue of dropping out their studies. This investigation actively integrates the benefits ofmachine learning. Hence, we will concentrate on two fundamental strategies which are KNN, which depends on the idea of likeness among data; and the famous strategy SVM, which can break the

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Skull Stripping Based on the Segmentation Models
...Show More Authors

Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither no

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Aug 31 2021
Journal Name
Inmateh Agricultural Engineering
DETERMINING THE EFFICIENCY OF A SMART SPRAYING ROBOT FOR CROP PROTECTION USING IMAGE PROCESSING TECHNOLOGY
...Show More Authors

A system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis System using SimpNet Deep Model
...Show More Authors

After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Tue Jun 23 2020
Journal Name
Baghdad Science Journal
Anomaly Detection Approach Based on Deep Neural Network and Dropout
...Show More Authors

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct

... Show More
View Publication Preview PDF
Scopus (23)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sun Jun 02 2019
Journal Name
Journal Of The College Of Languages (jcl)
The vision of Hebrew writers and critics of the future of the Jews in their writings at the end of the 19th century and the beginning of the twentieth c: דעותיהם של הסופרים והמבקרים העבריים על עתידם של היהודים לפי כתבותיהם בשלהי המאה ה-19 ובתחילת המאה ה-20
...Show More Authors

It is very known  how great is the  role of the Jewish writers in the system of the Zionist movement. The movement relied on writers and writers to carry out their programs, especially those pertaining to the creation of a "national homeland" for Jews. Most Jewish writers sang of  Palestine even though they were not born there.

    On such a  basis, we have followed closely the writings of writers, critics and others by the end of the nineteenth century and the beginning of the twentieth century. We found that these writings are based on one common question: What is the fate of the Jewish people?

    Most of these writings were accompanied by Theodor Herzl's proj

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 24 2024
Journal Name
Cogent Arts & Humanities
Women’s health on social media: a corpus stylistic study of Pink October campaigns
...Show More Authors

.

View Publication
Scopus Clarivate Crossref