One of the unique properties of laser heating applications is its powerful ability for precise pouring of energy on the needed regions in heat treatment applications. The rapid rise in temperature at the irradiated region produces a high temperature gradient, which contributes in phase metallurgical changes, inside the volume of the irradiated material. This article presents a comprehensive numerical work for a model based on experimentally laser heated AISI 1110 steel samples. The numerical investigation is based on the finite element method (FEM) taking in consideration the temperature dependent material properties to predict the temperature distribution within the irradiated material volume. The finite element analysis (FEA) was carried out using the APDL scripting language (ANSYS Parametric Design Language) that is provided by the commercial code ANSYS. Infrared (IR) thermography technique was used to explore the workpiece surface and to validate the obtained results. The work takes into account the effect of different speeds of the laser beam and pulses overlap on the temperature pattern of the material surface and depth.
Background: In young adults, multiple sclerosis is a prevalent chronic inflammatory demyelinating condition. It is characterized by white matter affection, but many individuals also have significant gray matter involvement. A double-inversion recovery pulse (DIR) pattern was recently proposed to improve the visibility of multiple sclerosis lesions. Objective: To find out how well a DIR sequence, FLAIR, and T2-weighted pulse sequences can find MS lesions in the supratentorial and infratentorial regions. Methods: A total of 37 patients with established diagnoses of multiple sclerosis were included in this cross-sectional study. Brain MRI was done using double inversion recovery, T2, and FLAIR sequences. The number of lesions was count
... Show MoreThe new 4-[(7-chloro-2,1,3-benzoxadiazole)azo]-4,5-diphenyl imidazole (L) have been synthesized and characterized by micro elemental and thermal analyses as well as 1H.NMR, FT-IR, and UV-Vis spectroscopic techniques. (L) acts as a ligand coordinating with some metal ionsV(IV), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II). Structures of the new compounds were characterized by elemental and thermal analyses as well as FT-IR and UV-Vis Spectra. The magnetic properties and electrical conductivities of metal complexes were also determined. Study of the nature of the complexes formed in ethanol following the mole ratio method.. The work also include a theoretical treatment of the formed complexes in the gas phase, this was done using the (hyperch
... Show MoreChronic Kidney Disease (CKD) is a public health problem and many studies support the link between kidney dysfunction and cardiovascular events. Aldosterone has been shown for decades that a plasma aldosterone concentration is elevated in CKD. Whilst, Osteoprotegerin (OPG), after its capacity to protect bone, also osteoprotegerin is elevated in patients with chronic kidney disease (CKD), where it could predict the deterioration of kidney function, cardiovascular, vascular events and all-cause mortality. On the other hand, fibroblast growth factors (FGFs), in patients with CKD, its levels seem to increase progressively as kidney function worsens. The aim of the present study is to assess the correlations between serum osteoprotegerin
... Show MoreThe Co (II), Ni (II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II) complexes of mixed of amino acid (L-Alanine ) and Trimethoprim antibiotic were synthesized. The complexes were characterized using melting point, conductivity measurement and determination the percentage of the metal in the complexes by flame (AAS). Magnetic susceptibility, Spectroscopic Method [FTIR and UV-Vis]. The general formula have been given for the prepared mixed ligand complexes [M(Ala)2(TMP)(H2O)] where L- alanine (abbreviated as (Ala ) = (C5H9NO2) deprotonated primary ligand, L- Alanine ion .= (C5H8NO2 -) Trimethoprim (abbreviated as (TMP ) = C10H11N3O3S M(II) = Co (II),Ni(II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II). The results showed that the deprotonated L- Alanine by KOH (Ala
... Show MoreThe prostaglandins inside inflamed tissues are produced by cyclooxygenase-2 (COX-2), making it an important target for improving anti-inflammatory medications over a long period. Adverse effects have been related to the traditional usage of non-steroidal anti-inflammatory drugs (NSAIDs) for the treatment of inflammation, mainly centered around gastrointestinal (GI) complications. The current research involves the creation of a virtual library of innovative molecules showing similar drug properties via a structure-based drug design. A library that includes five novel derivatives of Diclofenac was designed. Subsequently, molecular docking through the Glide module and determining the binding free energy implementing the P
... Show Morenew six mixed ligand complexes of some transition metal ions Manganese (II), Cobalt(II), Iron (II), Nickel (II) , and non transition metal ion zinc (II) And Cadmium(II) with L-valine (Val H ) as a primary ligand and Saccharin (HSac) as a secondary ligands have been prepared. All the prepared complexes have been characterized by molar conductance, magnetic susceptibility infrared, electronic spectral, Elemental microanalysis (C.H.N) and AA . The complexes with the formulas [M(Val)2(HSac)2] M= Mn (II) , Fe (II) , Co(II) ,Ni(II), Cu (II),Zn(II) and Cd(II) L- Val H= (C5H11NO2) , C7H5NO3S The study shows that these complexes have octahedral geometry; The metal complexes have been screened for their in microbiological activities against bacteria.
... Show MoreThe syntheses, characterizations and structures of three novel dichloro(bis{2-[1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II), [M(L)2Cl2], complexes (metal = Mn, Co and Ni) are presented. In the solid state the molecules are arranged in infinite hydrogen-bonded 3D supramolecular structures, further stabilized by weak intermolecular π…π interactions. The DFT results for all the different spin states and isomers of dichloro(bis{2-[1-phenyl-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II) complexes, [M(L1)2Cl2], support experimental measurements, namely that (i) d5 [Mn(L1)2Cl2] is high spin with S = 5/2; (ii) d7 [Co(L1)2Cl2] has a spin state of S = 3/2, (iii) d8 [Ni(L1)2Cl2] has a spin state of S =
... Show More