The rehabilitation of deteriorated pavements using Asphalt Concrete (AC) overlays consistently confronts the reflection cracking challenge, where inherent cracks and joints from an existing pavement layer are mirrored in the new overlay. To address this issue, the current study evaluates the effectiveness of Engineered Cementitious Composite (ECC) and geotextile fabric as mitigation strategies. ECC, characterized by its tensile ductility, fracture resistance, and high deformation capacity, was examined in interlayer thicknesses of 7, 12, and 17 mm. Additionally, the impact of geotextile fabric positioning at the base and at 1/3 depth of the AC specimen was explored. Utilizing the Overlay Testing Machine (OTM) for evaluations, the research demonstrated that ECC17 significantly mitigated reflection cracking, showing a notable 764% increase in the number of load cycles to failure (Nf) compared to the Geotextile Base (GB) specimen. Against the Reference Specimen (RS), ECC17 exhibited a remarkable 1307% enhancement in Nf values, underscoring its effectiveness. Geotextile fabric, particularly at 1/3 depth, demonstrated notable resistance but was overshadowed by the performance of ECC interlayers. The results clearly indicate that ECC, especially ECC17, stands out as an effective solution for mitigating reflection cracking, including joints, in AC overlays.
Coronavirus disease (COVID-19), which is caused by SARS-CoV-2, has been announced as a global pandemic by the World Health Organization (WHO), which results in the collapsing of the healthcare systems in several countries around the globe. Machine learning (ML) methods are one of the most utilized approaches in artificial intelligence (AI) to classify COVID-19 images. However, there are many machine-learning methods used to classify COVID-19. The question is: which machine learning method is best over multi-criteria evaluation? Therefore, this research presents benchmarking of COVID-19 machine learning methods, which is recognized as a multi-criteria decision-making (MCDM) problem. In the recent century, the trend of developing
... Show MoreArtificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit
Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l
... Show MoreThis study includes the preparation of the ferrite nanoparticles CuxCe0.3-XNi0.7Fe2O4 (where: x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) using the sol-gel (auto combustion) method, and citric acid was used as a fuel for combustion. The results of the tests conducted by X-ray diffraction (XRD), emitting-field scanning electron microscopy (FE-SEM), energy-dispersive X-ray analyzer (EDX), and Vibration Sample Magnetic Device (VSM) showed that the compound has a face-centered cubic structure, and the lattice constant is increased with increasing Cu ion. On the other hand, the compound has apparent porosity and spherical particles, and t
... Show MoreAs one type of resistance furnace, the electrical tube furnace (ETF) typically experiences input noise, measurement noise, system uncertainties, unmodeled dynamics and external disturbances, which significantly degrade its temperature control performance. To provide precise, and robust temperature tracking performance for the ETF, a robust composite control (RCC) method is proposed in this paper. The overall RCC method consists of four elements: First, the mathematical model of the ETF system is deduced, then a state feedback control (SFC) is constructed. Third, a novel disturbance observer (DO) is designed to estimate the lumped disturbance with one observer parameter. Moreover, the stability of the closed loop system including controller
... Show MoreIn the current work various types of epoxy composites were added to concrete to enhance its effectiveness as a gamma- ray shield. Four epoxy samples of (E/clay/B4C) S1, (E/Mag/B4C) S2, (EPIL) S3 and (Ep) S4 were used in a comparative study of gamma radiation attenuation properties of these shields that calculating using Mont Carlo code (MCNP-5). Adopting Win X-com software and Artificial Neural Network (ANN), µ/ρ revealed great compliance with MCNP-5. By applying (µ/ρ) output for gamma at different energies, HVL, TVL and MFP have been also estimated. ANN technique was simulated to estimate (µ/ρ) and dose rates. According to the results, µ/ρ of all epoxy samples scored higher than standard concrete. Both S2 and S3 samples having h
... Show MoreA novel robust finite time disturbance observer (RFTDO) based on an independent output-finite time composite control (FTCC) scheme is proposed for an air conditioning-system temperature and humidity regulation. The variable air volume (VAV) of the system is represented by two first-order mathematical models for the temperature and humidity dynamics. In the temperature loop dynamics, a RFTDO temperature (RFTDO-T) and an FTCC temperature (FTCC-T) are designed to estimate and reject the lumped disturbances of the temperature subsystem. In the humidity loop, a robust output of the FTCC humidity (FTCC-H) and RFTDO humidity (RFTDO-H) are also designed to estimate and reject the lumped disturbances of the humidity subsystem. Based on Lyapunov theo
... Show MoreThis paper proposes a new methodology for improving network security by introducing an optimised hybrid intrusion detection system (IDS) framework solution as a middle layer between the end devices. It considers the difficulty of updating databases to uncover new threats that plague firewalls and detection systems, in addition to big data challenges. The proposed framework introduces a supervised network IDS based on a deep learning technique of convolutional neural networks (CNN) using the UNSW-NB15 dataset. It implements recursive feature elimination (RFE) with extreme gradient boosting (XGB) to reduce resource and time consumption. Additionally, it reduces bias toward
... Show MoreThe interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm
... Show MoreIn this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho
... Show More