A substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques. This study comprehensively analyzes different FS approaches based on optimization algorithms for TC. We begin by introducing the primary phases involved in implementing TC. Subsequently, we explore a wide range of FS approaches for categorizing text documents and attempt to organize the existing works into four fundamental approaches: filter, wrapper, hybrid, and embedded. Furthermore, we review four optimization algorithms utilized in solving text FS problems: swarm intelligence-based, evolutionary-based, physics-based, and human behavior-related algorithms. We discuss the advantages and disadvantages of state-of-the-art studies that employ optimization algorithms for text FS methods. Additionally, we consider several aspects of each proposed method and thoroughly discuss the challenges associated with datasets, FS approaches, optimization algorithms, machine learning classifiers, and evaluation criteria employed to assess new and existing techniques. Finally, by identifying research gaps and proposing future directions, our review provides valuable guidance to researchers in developing and situating further studies within the current body of literature.
The current research aims to find out ( the effectiveness of the structural model of learning in the acquisition of geographical concepts at the first grade average students ) , and achieving the goals of research has been formulating the null hypothesis of the following :
" There is no difference statistically significant when Mistoi (0.5 ) between the mean scores of the collection of students in the experimental group that is studying the general geographical principles " Bonmozj constructivist learning " and the mean scores of the control group , which is considering the same article ," the traditional way " to acquire concepts.
The researcher adopted th
... Show MoreThe impact of COVID-19 pandemic on education models was mainly through the expansion of technology use in the different educational programs. Earlier impact of COVID-19 was manifested in the complete and sudden transition to distance education regardless of institution preparedness status. Gradually, many institutions are moving back to on-campus face-to-face education. However, others including all higher education institutions in Iraq are adopting the hybrid education model. This report presents part of the end of semester evaluation survey conducted at the University of Baghdad College of Pharmacy for the Spring 2021 semester. The survey aims to address points of strength and weakness associated with the hybrid education model and spe
... Show MoreThe present paper, practical methods of professional translation, discusses the most important methods to achieve an accurate effective translation from the source language text to the equivalent target language text.
The present study suggests that practical translation like any literary activity is of six main stages that follow sequential order to achieve an accurate translation: (choosing the foreign text to be translated, the author of the text permission, the text translation, considering the title contextual meaning, reviewing the text translation, and finally finding a good publisher).
چکیده
پژوهش حاضر که با عنوان گامهای عملی یک ترجمهء حر
... Show MoreIn this paper we generalize some of the results due to Bell and Mason on a near-ring N admitting a derivation D , and we will show that the body of evidence on prime near-rings with derivations have the behavior of the ring. Our purpose in this work is to explore further this ring like behavior. Also, we show that under appropriate additional hypothesis a near-ring must be a commutative ring.
Conditional logistic regression is often used to study the relationship between event outcomes and specific prognostic factors in order to application of logistic regression and utilizing its predictive capabilities into environmental studies. This research seeks to demonstrate a novel approach of implementing conditional logistic regression in environmental research through inference methods predicated on longitudinal data. Thus, statistical analysis of longitudinal data requires methods that can properly take into account the interdependence within-subjects for the response measurements. If this correlation ignored then inferences such as statistical tests and confidence intervals can be invalid largely.
The majority of Arab EFL (English as a Foreign Language) learners struggle with speaking English fluency. Iraqi students struggle to speak English confidently due to mispronunciation, grammatical errors, short and long pauses while speaking or feeling confused in normal conversations. Collaborative learning is crucial to enhance student’s speaking skills in the long run. This study aims to state the importance of collaborative learning as a teaching method to EFL learners in the meantime. In this quantitative and qualitative study, specific focus is taken on some of Barros’s views of collaborative learning as a teamwork and some of Pattanpichet’s speaking achievements under four categories: academic benefits, social benefits,
... Show MoreWith its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show MoreThis paper presents an efficient system using a deep learning algorithm that recognizes daily activities and investigates the worst falling cases to save elders during daily life. This system is a physical activity recognition system based on the Internet of Medical Things (IoMT) and uses convolutional neural networks (CNNets) that learn features and classifiers automatically. The test data include the elderly who live alone. The performance of CNNets is compared against that of state-of-the-art methods, such as activity windowing, fixed sample windowing, time-weighted windowing, mutual information windowing, dynamic windowing, fixed time windowing, sequence prediction algorithm, and conditional random fields. Th
... Show MoreAbstract
Machining residual stresses correlate very closely with the cutting parameters and the tool geometries. This research work aims to investigate the effect of cutting speed, feed rate and depth of cut on the surface residual stress of steel AISI 1045 after face milling operation. After each milling test, the residual stress on the surface of the workpiece was measured by using X-ray diffraction technique. Design of Experiment (DOE) software was employed using the response surface methodology (RSM) technique with a central composite rotatable design to build a mathematical model to determine the relationship between the input variables and the response. The results showed that both
... Show MoreDeepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this asp
... Show More