In this paper, a compact genetic algorithm (CGA) is enhanced by integrating its selection strategy with a steepest descent algorithm (SDA) as a local search method to give I-CGA-SDA. This system is an attempt to avoid the large CPU time and computational complexity of the standard genetic algorithm. Here, CGA dramatically reduces the number of bits required to store the population and has a faster convergence. Consequently, this integrated system is used to optimize the maximum likelihood function lnL(φ1, θ1) of the mixed model. Simulation results based on MSE were compared with those obtained from the SDA and showed that the hybrid genetic algorithm (HGA) and I-CGA-SDA can give a good estimator of (φ1, θ1) for the ARMA(1,1) model. Another comparison has been conducted to show that the I-CGA-SDA has fewer function evaluations, minimum search space percentage, faster convergence speed and has a higher optimal precision than that of the HGA.
The reaction oisolated and characterized by elemental analysis (C,H,N) , 1H-NMR, mass spectra and Fourier transform (Ft-IR). The reaction of the (L-AZD) with: [VO(II), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)], has been investigated and was isolated as tri nuclear cluster and characterized by: Ft-IR, U. v- Visible, electrical conductivity, magnetic susceptibilities at 25 Co, atomic absorption and molar ratio. Spectroscopic evidence showed that the binding of metal ions were through azide and carbonyl moieties resulting in a six- coordinating metal ions in [Cr (III), Mn (II), Co (II) and Ni (II)]. The Vo (II), Cu (II), Zn (II), Cd (II) and Hg (II) were coordinated through azide group only forming square pyramidal
... Show More