Nanofluids (i.e. nanoparticles dispersed in a fluid) have tremendous potential in a broad range of applications, including pharmacy, medicine, water treatment, soil decontamination, or oil recovery and CO2 geo-sequestration. In these applications nanofluid stability plays a key role, and typically robust stability is required. However, the fluids in these applications are saline, and no stability data is available for such salt-containing fluids. We thus measured and quantified nanofluid stability for a wide range of nanofluid formulations, as a function of salinity, nanoparticle content and various additives, and we investigated how this stability can be improved. Zeta sizer and dynamic light scattering (DLS) principles were used to investigate zeta potential and particle size distribution of nanoparticle-surfactant formulations. Also scanning electron microscopy was used to examine the physicochemical aspects of the suspension. We found that the salt drastically reduced nanofluid stability (because of the screening effect on the repulsive forces between the nanoparticles), while addition of anionic surfactant improved stability. Cationic surfactants again deteriorated stability. Mechanisms for the different behaviour of the different formulations were identified and are discussed here. We thus conclude that for achieving maximum nanofluid stability, anionic surfactant should be added.
A pioneering idea for increasing the thermal performance of heat transfer fluids was to use ultrafine solid particles suspended in the base fluid. Nanofluids, synthesized by mixing solid nanometer sized particles at low concentrations with the base fluid, were used as a new heat transfer fluid and developed a remarkable effect on the thermophysical properties and heat transfer coefficient. For any nanofluid to be usable in heat transfer applications, the main concern is its long-term stability. The aim of this research is to investigate the effect of using four different surfactants (sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), cetyl trimethylammonium bromide (CTAB), and gum Arabic (GA)), each with three different
... Show MoreAbstract
In this paper presents two dimensional turbulent flow of different nanofluids and ribs configuration in a circular tube have been numerically investigation using FLUENT 6.3.26. Two samples of CuO and, ZnO nanoparticles with 2% v/v concentration and 40 nm as nanoparticle diameter combined with trapezoidalribs with aspect ratio of p/d=5.72 in a constant tube surface heat flux were conducted for simulation. The results showed that heat flow as Nusselt number for all cases raises with Reynolds number and volume fraction of nanofluid, likewise the results also reveal that ZnO with volume fractions of 2% in trapezoidal ribs offered highest Nusselt number at Reynolds number of Re= 30000.
Key
... Show MoreIn this study, the flow and heat transfer characteristics of Al2O3-water nanofluids for a range of the Reynolds number of 3000, 4500, 6000 and 7500 with a range of volume concentration of 1%, 2%, 3% and 4% are studied numerically. The test rig consists of cold liquid loop, hot liquid loop and the test section which is counter flow double pipe heat exchanger with 1m length. The inner tube is made of smooth copper with diameter of 15mm. The outer tube is made of smooth copper with diameter of 50mm. The hot liquid flows through the outer tube and the cold liquid (or nanofluid) flow through the inner tube. The boundary condition of this study is thermally insulated the outer wall with uniform velocity a
... Show MoreContinuous escalation of the cost of generating energy is preceded by the fact of scary depletion of the energy reserve of the fossil fuels and pollution of the environment as developed and developing countries burn these fuels. To meet the challenge of the impending energy crisis, renewable energy has been growing rapidly in the last decade. Among the renewable energy sources, solar energy is the most extensively available energy, has the least effect on the environment, and is very efficient in terms of energy conversion. Thus, solar energy has become one of the preferred sources of renewable energy. Flat-plate solar collectors are one of the extensively-used and well-known types of solar collectors. However, the effectiveness of the coll
... Show MoreOver last decade, rapid growth in economic and population accompanied with depletion of the energy resources lead to serious impacts on environment and humanity. This development coupled with active constructions, which in some examples ignore the impact on the environment and human activities. Therefore, principle of sustainability has required in order to reducing this negative impact on the environment and the humanity.In developing countries, it seems that there is a huge gap between the current construction practices and sustainable principle, which need more attention to clarify and define the problems in order to find suitable solutions before it comes more difficult and expensive. The study aims to choose one of the develo
Ultimate oil recovery and displacement efficiency at the pore-scale are controlled by the rock wettability thus there is a growing interest in the wetting behaviour of reservoir rocks as production from fractured oil-wet or mixed-wet limestone formations have remained a key challenge. Conventional waterflooding methods are inefficient in such formation due to poor spontaneous imbibition of water into the oil-wet rock capillaries. However, altering the wettability to water-wet could yield recovery of significant amounts of additional oil thus this study investigates the influence of nanoparticles on wettability alteration. The efficiency of various formulated zirconium-oxide (ZrO2) based nanofluids at different nanoparticle concentrations (0
... Show MoreCyanobacteria are prokaryotic photosynthetic communities which are used in biofertilization of many plants especially rice plant. Cyanobacteria play a vital role to increase the plant's ability for salinity tolerance. Salinity is a worldwide problem which affects the growth and productivity of crops. In this work three cyanobacteria strains (Nostoc calcicola, Anabaena variabilis, and Nostoc linkia) were isolated from saline soil at Kafr El-Sheikh Governorate; North Egypt. The propagated cyanobacteria strains were used to withstand salinity of the soil and increase rice plant growth (Giza 178). The length of roots and shoot seedlings was measured for seven and forty days of cultivation, respectively. The results of this investigation showed
... Show More