Preferred Language
Articles
/
ShbpKosBVTCNdQwCSshd
Modeling and optimization of biodiesel from high free‐fatty‐acid chicken fat by non‐catalytic esterification and mussel‐shell‐catalyzed transesterification
...Show More Authors
Abstract<sec><title>BACKGROUND

In this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcination process at different calcination times of (1‐5) h and temperatures of (700‐900) °C. The catalyst was characterized using BET, SEM, EDX, XRD, and FTIR.

RESULTS

In the transesterification reaction, the best values of the studied parameters were: 21:1 methanol: oil molar ratio, 12 wt% catalyst loading, 5 h reaction time, and 63°C reaction temperature, which gave 96.2% methyl esters content. For catalyst synthesis, it was found that the optimum calcination conditions were 900 °C and 3 h, which resulted in a specific surface area of 10.5 m2/g and a large pore volume of 0.0033 cm3/g.

CONCLUSION

A calcium oxide catalyst was successfully prepared from mussel shells. This catalyst was used to transesterify the chicken fat into biodiesel. The prepared catalyst exhibited a high active surface area and a pore volume, confirming that the CaO catalyst produced from waste mussel shells worked effectively, steadily, and affordably to produce renewable biodiesel. The best working conditions for the transesterification reaction were determined using the central Composite Design method (CCD). © 2023 Society of Chemical Industry.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jan 01 2019
Journal Name
Advances In Materials Physics And Chemistry
The Role of Cooling Condition on the Superconducting Properties of Tl&amp;lt;sub&amp;gt;2-x&amp;lt;/sub&amp;gt;Hg&amp;lt;sub&amp;gt;x&amp;lt;/sub&amp;gt;Sr&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt;Ca&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt;Cu&amp;lt;sub&amp;gt;3&amp;lt;/sub&amp;gt;O&amp;lt;sub&amp;gt;10+δ&amp;lt;/sub&amp;gt; System
...Show More Authors

View Publication
Crossref
Publication Date
Tue Jul 20 2021
Journal Name
Materials Science Forum
Red Laser Irradiation Effect on the Structural Properties of MawsoniteCu&lt;sub&gt;6&lt;/sub&gt;Fe&lt;sub&gt;2&lt;/sub&gt;SnS&lt;sub&gt;8&lt;/sub&gt; [CFTS] Thin Films Deposited via Semi-Computerized Spray Pyrolysis Technique
...Show More Authors

The existing investigation explains the consequence of irradiation of violet laser on the structure properties of MawsoniteCu6Fe2SnS8 [CFTS] thin films. The film was equipped by the utilization of semi-computerized spray pyrolysis technique (SCSPT), it is the first time that this technique is used in the preparation and irradiation using a laser. when the received films were processed by continuous red laser (700 nm) with power (>1000mW) for different laser irradiation time using different number of times a laser scan (0, 6, 9, 12, 15 and 18 times) with total irradiation time (0,30,45,60,75,90 min) respectively at room temperature.. The XRD diffraction gave polycrysta

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Jan 18 2022
Journal Name
Materials Science Forum
The Effect of Gamma Radiation on the Manufactured HgBa&lt;sub&gt;2&lt;/sub&gt;Ca&lt;sub&gt;2&lt;/sub&gt;Cu&lt;sub&gt;2.4&lt;/sub&gt;Ag&lt;sub&gt;0.6&lt;/sub&gt;O&lt;sub&gt;8+δ&lt;/sub&gt; Compound
...Show More Authors

In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref