Psidium guajava, belonging to the Myrtaceae family, thrives in tropical and subtropical regions worldwide. This important tropical fruit finds widespread cultivation in countries like India, Indonesia, Syria, Pakistan, Bangladesh, and South America. Throughout its various parts, including fruits, leaves, and barks, guava boasts a rich reservoir of bioactive compounds that have been traditionally utilized as folkloric herbal medicines, offering numerous therapeutic applications. Within guava, an extensive array of Various compounds with antioxidative properties and phytochemical constituents are present, including essential oils, polysaccharides, minerals, vitamins, enzymes, triterpenoids, alkaloids, steroids, glycosides, tannins, flavonoids, and saponins. Notably, different components of the plant, comprising leaves and fruits, contribute to a spectrum of medicinal benefits. These encompass antimicrobial potency and potential anti-cancer properties. This study Investigates the phytochemical constituent and pharmacological activity of Guava by using previous studies and reports to collect more information about the guava plant. versatile properties extend to various therapeutic domains. The fruit has showcased its potential in domains like antidiabetic, antidiarrheal, hepatoprotective, anticancer, antioxidant, anti-inflammatory, antimicrobial, anti-allergy, and anti-plasmodial effects. Both guava leaves and fruits have been historically employed to address an array of conditions, including gastroenteritis, hypertension, diabetes, dental caries, and pain relief. While guava's pharmacological attributes are well-recognized, also all parts of guava have many phytochemical constituents. This review study shows the most important phytochemical constituents and pharmacological properties, it is vital to emphasize the need for further research. Enhanced understanding of the main mechanisms of action and the possible health advantages associated with guava necessitates continued investigation.
The reaction of LAs-Cl8 : [ (2,2- (1-(3,4-bis(carboxylicdichloromethoxy)-5-oxo-2,5- dihydrofuran-2-yl)ethane – 1,2-diyl)bis(2,2-dichloroacetic acid)]with sodium azide in ethanol with drops of distilled water has been investigated . The new product L-AZ :(3Z ,5Z,8Z)-2- azido-8-[azido(3Z,5Z)-2-azido-2,6-bis(azidocarbonyl)-8,9-dihydro-2H-1,7-dioxa-3,4,5- triazonine-9-yl]methyl]-9-[(1-azido-1-hydroxy)methyl]-2H-1,7-dioxa-3,4,5-triazonine – 2,6 – dicarbonylazide was isolated and characterized by elemental analysis (C.H.N) , 1H-NMR , Mass spectrum and Fourier transform infrared spectrophotometer (FT-IR) . The reaction of the L-AZ withM+n: [ ( VO(II) , Cr(III) ,Mn(II) , Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) and Hg(II)] has been i
... Show MoreHemorrhagic insult is a major source of morbidity and mortality in both adults and newborn babies in the developed countries. The mechanisms underlying the non-traumatic rupture of cerebral vessels are not fully clear, but there is strong evidence that stress, which is associated with an increase in arterial blood pressure, plays a crucial role in the development of acute intracranial hemorrhage (ICH), and alterations in cerebral blood flow (CBF) may contribute to the pathogenesis of ICH. The problem is that there are no effective diagnostic methods that allow for a prognosis of risk to be made for the development of ICH. Therefore, quantitative assessment of CBF may significantly advance the underst