Preferred Language
Articles
/
RBcN_5MBVTCNdQwCCexs
Interference with quorum sensing of Klebsiella pneumoniae by some plant extracts can affect the biofilm formation and antibiotic resistance.
...Show More Authors

Quorum sensing (QS) is a perfectly orchestrated molecular communication system. It is a boon for Klebsiella pneumoniae, and bane for the host. This system is believed to make K. pneumoniae a leading cause of multidrug-resistant (MDR) nosocomial infections. This study aimed to investigate the antibacterial and anti-biofilm potential of medicinal plant extracts through interfering with QS of K. pneumoniae. The effect of different concentrations of ethanolic extracts of cinnamon and clove on K. pneumoniae was determined by analyzing the growth curve, survival assay (MTT), Qualitative and quantitative biofilm formation, antibiotic resistance, along with studying gene expression of the genes encoding the above traits, using quantitative real time polymerase chain reaction (qRT-PCR). The low concentrations of the plant extracts did not affect neither on the bacterial growth, nor on the viability of K. pneumoniae, supported with growth curves. Additionally, the biofilm production was inhibited even by lower plant concentrations, and both cinnamon and clove extracts were able to render the MDR bacteria to be more susceptible to antibiotics. At the molecular levels, the bacterium treated with either clove or cinnamon or in combination showed under expression of the biofilm formation regulation gene (bssS), the carbapenem resistance gene (bla), as well as the QS target gene (LuxS). Both clove and cinnamon ethanolic extracts exerted potent impacts on reducing pathogenic traits regulated by QS in K. pneumoniae. Finally, the study recommends further exploration of clove and cinnamon extracts separately or in combination to develop alternative therapies against MDR K. pneumoniae infections.

View Publication Preview PDF
Quick Preview PDF