Recent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. To reduce the number of generated sub-graphs, overlap ratio metric is utilized for this purpose. After encoding the final selected sub-graphs, binary classification is then applied to classify the emotion of the queried input facial image using six levels of classification. Binary cat swarm intelligence is applied within each level of classification to select proper sub-graphs that give the highest accuracy in that level. Different experiments have been conducted using Surrey Audio-Visual Expressed Emotion (SAVEE) database and the final system accuracy was 90.00%. The results show significant accuracy improvements (about 2%) by the proposed system in comparison to current published works in SAVEE database.
Due to the increased of information existing on the World Wide Web (WWW), the subject of how to extract new and useful knowledge from the log file has gained big interest among researchers in data mining and knowledge discovery topics.
Web miming, which is a subset of data mining divided into three particular ways, web content mining, web structure mining, web usage mining. This paper is interested in server log file, which is belonging to the third category (web usage mining). This file will be analyzed according to the suggested algorithm to extract the behavior of the user. Knowing the behavior is coming from knowing the complete path which is taken from the specific user.
Extracting these types of knowledge required many of KDD
Software Defined Networking (SDN) with centralized control provides a global view and achieves efficient network resources management. However, using centralized controllers has several limitations related to scalability and performance, especially with the exponential growth of 5G communication. This paper proposes a novel traffic scheduling algorithm to avoid congestion in the control plane. The Packet-In messages received from different 5G devices are classified into two classes: critical and non-critical 5G communication by adopting Dual-Spike Neural Networks (DSNN) classifier and implementing it on a Virtualized Network Function (VNF). Dual spikes identify each class to increase the reliability of the classification
... Show MoreThe logistic regression model is an important statistical model showing the relationship between the binary variable and the explanatory variables. The large number of explanations that are usually used to illustrate the response led to the emergence of the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not accurate.
... Show MoreSewer sediment deposition is an important aspect as it relates to several operational and environmental problems. It concerns municipalities as it affects the sewer system and contributes to sewer failure which has a catastrophic effect if happened in trunks or interceptors. Sewer rehabilitation is a costly process and complex in terms of choosing the method of rehabilitation and individual sewers to be rehabilitated. For such a complex process, inspection techniques assist in the decision-making process; though, it may add to the total expenditure of the project as it requires special tools and trained personnel. For developing countries, Inspection could prohibit the rehabilitation proceeds. In this study, the researchers propos
... Show MoreImage classification can be defined as one of the most important tasks in the area of machine learning. Recently, deep neural networks, especially deep convolution networks, have participated greatly in end-to-end learning which reduce need for human designed features in the image recognition like Convolution Neural Network. It is offers the computation models which are made up of several processing layers for learning data representations with several abstraction levels. In this work, a pre-trained deep CNN is utilized according to some parameters like filter size, no of convolution, pooling, fully connected and type of activation function which includes 300 images for training and predict 100 image gender using probability measures. Re
... Show MoreThe diagnoses system of varicose disease has a good level of performance due to the complexity and uniqueness in patterns of vein of the leg. In addition, the patterns of vein are internal of the body, and its features are hard to duplicate, this reason make this method not easy to fake, and thus make it contains of a good features for varicose disease diagnoses. The proposed system used more than one type of algorithms to produce diagnoses system of varicose disease with high accuracy, in addition, this multi-algorithm technique based on veins as a factor to recognize varicose infection. The obtained results indicate that the design of varicose diagnoses system by applying multi- algorithms (Naïve Bayes and Back-Propagation) produced n
... Show MoreCOVID-19 is a disease that has abnormal over 170 nations worldwide. The number of infected people (either sick or dead) has been growing at a worrying ratio in virtually all the affected countries. Forecasting procedures can be instructed so helping in scheming well plans and in captivating creative conclusions. These procedures measure the conditions of the previous thus allowing well forecasts around the state to arise in the future. These predictions strength helps to make contradiction of likely pressures and significances. Forecasting procedures production a very main character in elastic precise predictions. In this case study used two models in order to diagnose optimal approach by compared the outputs. This study was introduce
... Show MoreSuperconducting compound Bi2Sr2-xYxCa2Cu3O10+δ were Synthesized by method of solid state reaction, at 1033 K for 160 hours temperature of the sintering at normal atmospheric pressure where substitutions Yttrium oxide with Strontium. When Y2O3 concentration (0.0, 0.1, 0.2, 0.3, 0.4 and 0.5). All specimens of Bi2Sr2Ca2Cu3O10+δ superconducting compounds were examined. The resistivity of electrical was checked by the four point probe technique, It was found th
Literary works include, for the most part, text thresholds, which are the first entry into reading them and understanding their connotations, and (literary works) vary according to text thresholds, some of which are limited to the title and on the cover page only, and others, in addition to these two thresholds, are based on the dedication threshold too, and others ...
This study takes the story of "Mamo Zain" of the poet Ahmed Al-Khani and his translator Sheikh Muhammad Ramadan Al-Bouti as the field of study, as it is a unique literary work, which included a number of textual thresholds which supported each other and cooperated with the content of the work.
The threshold of dedication in the story of "Mamo Zain" was a spee
... Show Moresix specimens of the Hg0.5Pb0.5Ba2Ca2Cu3-y