The monetary policy is a vital method used in implementing monetary stability through: the management of income and adjustment of the price (monetary targets) in order to promote stability and growth of real output (non-cash goals); the tool of interest rate and direct investment guides or movement towards the desired destination; and supervisory instruments of monetary policy in both quantitative and qualitative. The latter is very important as a standard compass to investigate the purposes of the movement monetary policy in the economy. The public and businesses were given monetary policy signals by those tools. In fiscal policy, there are specific techniques to follow to do the spending and collection of revenue. This is done in order to actualize the adopted goals by the state and the relative closeness between monetary policy and fiscal policy objectives that requires relationship between two policies. Also, in order to achieve the goal of stability and promote economic growth within the tax multiplier. Multiplier of government spending is aiming at the goal of stability automatically and the allocation or distribution of economic stability through a basic introduction of the aim and objective of allocating resources to the required fields. In this vein, the objectives of the fiscal policy can be brought up spontaneously with the provisions of side and control effects which are in consonant with the outcome received in terms of economic cycle. The research showed that the impact of monetary policy in Iraq is insignificant on non-oil gross domestic product through a multiplier of monetary policy (K) and the flexibility of non-oil gross domestic product for money supply (E). Similarly, the impact of fiscal policy on non-oil gross domestic product through the fiscal policy multiplier (K) and the flexibility of non-oil gross domestic product for the government to spend are insignificant
Some nonlinear differential equations with fractional order are evaluated using a novel approach, the Sumudu and Adomian Decomposition Technique (STADM). To get the results of the given model, the Sumudu transformation and iterative technique are employed. The suggested method has an advantage over alternative strategies in that it does not require additional resources or calculations. This approach works well, is easy to use, and yields good results. Besides, the solution graphs are plotted using MATLAB software. Also, the true solution of the fractional Newell-Whitehead equation is shown together with the approximate solutions of STADM. The results showed our approach is a great, reliable, and easy method to deal with specific problems
... Show MoreLattakia city faces many problems related to the mismanagement of solid waste, as the disposal process is limited to the random Al-Bassa landfill without treatment. Therefore, solid waste management poses a special challenge to decision-makers by choosing the appropriate tool that supports strategic decisions in choosing municipal solid waste treatment methods and evaluating their management systems. As the human is primarily responsible for the formation of waste, this study aims to measure the degree of environmental awareness in the Lattakia Governorate from the point of view of the research sample members and to discuss the effect of the studied variables (place of residence, educational level, gender, age, and professional status) o
... Show More In this research, an adaptive Canny algorithm using fast Otsu multithresholding method is presented, in which fast Otsu multithresholding method is used to calculate the optimum maximum and minimum hysteresis values and used as automatic thresholding for the fourth stage of the Canny algorithm. The new adaptive Canny algorithm and the standard Canny algorithm (manual hysteresis value) was tested on standard image (Lena) and satellite image. The results approved the validity and accuracy of the new algorithm to find the images edges for personal and satellite images as pre-step for image segmentation.
This Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters (as done in the first edition 2019). Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. While the revised new chapters have been added (as the curr
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters (as done in the first edition 2019). Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. While the revised new chapters have been added (as the curr
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. Many solved examples are intended in this book, in addition to a variety of unsolved relied pro
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. Many solved examples are intended in this book, in addition to a variety of unsolved relied pro
... Show MoreThe goal of this research is to solve several one-dimensional partial differential equations in linear and nonlinear forms using a powerful approximate analytical approach. Many of these equations are difficult to find the exact solutions due to their governing equations. Therefore, examining and analyzing efficient approximate analytical approaches to treat these problems are required. In this work, the homotopy analysis method (HAM) is proposed. We use convergence control parameters to optimize the approximate solution. This method relay on choosing with complete freedom an auxiliary function linear operator and initial guess to generate the series solution. Moreover, the method gives a convenient way to guarantee the converge
... Show More The most likely fusion reaction to be practical is Deuterium and Helium-3 (ð·âˆ’ð»ð‘’
3 ), which is highly desirable because both Helium -3 and Deuterium are stable and the reaction produces a 14 ð‘€ð‘’𑉠proton instead of a neutron and the proton can be shielded by magnetic fields. The strongly dependency of the basically hot plasma parameters such as reactivity, reaction rate, and energy for the emitted protons, upon the total cross section, make the problems for choosing the desirable formula for the cross section, the main goal for our present work.
In this paper, the reliability of the stress-strength model is derived for probability P(Y<X) of a component having its strength X exposed to one independent stress Y, when X and Y are following Gompertz Fréchet distribution with unknown shape parameters and known parameters . Different methods were used to estimate reliability R and Gompertz Fréchet distribution parameters, which are maximum likelihood, least square, weighted least square, regression, and ranked set sampling. Also, a comparison of these estimators was made by a simulation study based on mean square error (MSE) criteria. The comparison confirms that the performance of the maximum likelihood estimator is better than that of the other estimators.