Reliability analysis methods are used to evaluate the safety of reinforced concrete structures by evaluating the limit state function 𝑔(𝑋𝑖). For implicit limit state function and nonlinear analysis , an advanced reliability analysis methods are needed. Monte Carlo simulation (MCS) can be used in this case however, as the number of input variables increases, the time required for MCS also increases, making it a time consuming method especially for complex problems with implicit performance functions. In such cases, MCS-based FORM (First Order Reliability Method) and Artificial Neural Network-based FORM (ANN FORM) have been proposed as alternatives. However, it is important to note that both MCS-FORM and ANN-FORM can also be time-consuming methods in their own right. MCS-FORM involves running multiple MCS, and the time required increases with problem complexity and desired precision. ANN-FORM, on the other hand, can be faster for repetitive reliability assessments, but the training phase can be computationally expensive, and accuracy depends on training data quality and quantity. To address this computational challenge and enhance the efficiency of reliability analysis, a novel method is proposed in this paper. This method leverages the capabilities of ABAQUS, in combination with MATLAB. The key objective of this proposed approach is to automate and streamline the repetitive tasks involved in reliability analysis, thereby significantly reducing the computational time required for such analyses. The method is based on the development of a custom ABAQUS Python script file, which interfaces with MATLAB. The script serves as a bridge between the finite element analysis capabilities of ABAQUS and the data processing and analysis capabilities of MATLAB. An illustrative example was considered to demonstrate the application of the proposed method. In this example, a deteriorated simply supported concrete beam with an implicit performance function was analysed. The objective was to assess the reliability of the beam under the given conditions. To perform this reliability analysis, the two methods were employed: MCS-FORM and ANN-FORM. Both of these methods were implemented in conjunction with the newly developed approach that integrates ABAQUS and MATLAB. The results of this analysis were quite promising. Both MCS-FORM and ANN-FORM successfully estimated the reliability of the concrete beam, and they exhibited a high level of agreement in their assessments. This presented method demonstrates its suitability for the application of reliability analysis in scenarios such as the one presented. Its efficiency in automating repetitive tasks not only simplifies the analysis process but also facilitates the generation of multiple simulations. By doing so, it significantly minimizes the time and computational resources required for reliability assessments.
Alumina thin films have significant applications in the areas of optoelectronics, optics, electrical insulators, sensors and tribology. The novel aspect of this work is that the homogeneous alumina thin films were prepared in several stages to generate a plasma jet. In this paper, aluminium nanoparticles suspended in vinyl alcohol were prepared using exploding wire plasma. TEM analysis was used to determine the size and shape of particles in aluminium and vinyl alcohol suspensions; the TEM images showed that the particle size is 17.2 nm. Aluminium/poly vinyl alcohol (Al/PVA) thin films were prepared using this suspension on quartz substrate by plasma jet technique at room temperature with an argon gas flow rate of 1 L/min. The Al/PV
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreThe problem of the paper focused on the role of the learning organization in the crisis management strategy, and the extent of the actual interest in both the learning organization and the crisis management and aimed at diagnosing and analyzing that and surrounding questions. The Statistical Package for the Social Sciences (SPSS) program was used to calculate the results and the correlation coefficient between the two main variables. The methodology was descriptive and analytical. The case study was followed by a questionnaire that was distributed to a sample of 31 teachers. The paper adopted a seven-dimensional model of systemic thinking that encourages questioning, empowerment, provision of advanced technologies, and strategic lea
... Show MoreFetal growth restriction is a significant contributor to fetal morbidity and mortality. In addition, there are heightened maternal risks associated with surgical operations and their accompanying dangers. Monitoring fetal development is a crucial objective of prenatal care and effective methods for early diagnosis of Fetal growth restriction, allowing prompt management and timely intervention to improve the outcomes. Screening for Fetal growth restriction can be achieved via many modalities; it can be medical, biochemical, or radiological. Some recommended combining more than one for better outcomes. Currently, there is inconsistency about the best method of Fetal growth restriction screening. In this review, a comprehensive
... Show MoreAn encryption system needs unpredictability and randomness property to maintain information security during transmission and storage. Although chaotic maps have this property, they have limitations such as low Lyapunov exponents, low sensitivity and limited chaotic regions. The paper presents a new improved skewed tent map to address these problems. The improved skew tent map (ISTM) increases the sensitivity to initial conditions and control parameters. It has uniform distribution of output sequences. The programs for ISTM chaotic behavior were implemented in MATLAB R2023b. The novel ISTM produces a binary sequence, with high degree of complexity and good randomness properties. The performance of the ISTM generator shows effective s
... Show MoreBuffering of Local anaesthesia (LA) has been suggested as a mechanism to improve injection comfort and hasten the onset of anaesthesia. Aim This study aimed to evaluate the effectiveness of buffered LA in the extraction of maxillary premolars and molars. Materials and Methods This randomized controlled study included 100 patients who were indicated for extraction of maxillary posterior teeth, they were randomly divided into two groups; a study group that received infiltration of buffered 2% lidocaine hydrochloride with 1:80,000 epinephrine LA, and a control group that received non-buffered 2% lidocaine hydrochloride with 1:80,000 epinephrine LA. The buffering was performed using the Onset® LA buffering system (Onpharma®). The outcome va
... Show MoreBack ground: This in vitro study was carried out to investigate the effect of post space regions (coronal, middle and apical), Time and the mode of polymerization (dual, self-cured) of the cements used on the bond strength between translucent fiber post and root dentin by using push-out test. Materials and Methods: Forty eight extracted mandibular first premolars (single root) were instrumented with ProTaper Universal system files (for hand use) and obturated with gutta percha for ProTaper and AH26® root canal sealer following the manufacturer instructions, after 24 hours post space was prepared using FRC postec® plus drills no.3 creating 8 mm depth post space. The prepared samples were randomly divided into two main groups (24 samples ea
... Show MoreLanguage is an important means through which one can construct one's social world. Accordingly, the way we view ourselves and the world is basically formed by language use whereby identities, relations, and values are constructed and maintained. Most discourse analysts consider narrative not only the locus of construction and enactment of identity, but also a distinguished genre for its analysis.The present study is concerned with how identity can poetically be informed, hence exploring the way black poets use language when reflecting their identity and culture. The poem, right on: white america by the black American poetess Sonia Sanchez, is chosen to be analyzed based on Simpson's stylistic model (2004). In this model, the ana
... Show MoreThis research takes up address the practical side by taking case studies for construction projects that include the various Iraqi governorates, as it includes conducting a field survey to identify the impact of parametric costs on construction projects and compare them with what was reached during the analysis and the extent of their validity and accuracy, as well as adopting the approach of personal interviews to know the reality of the state of construction projects. The results showed, after comparing field data and its measurement in construction projects for the sectors (public and private), the correlation between the expected and actual cost change was (97.8%), and this means that the data can be adopted in the re
... Show More