Plagiarism is becoming more of a problem in academics. It’s made worse by the ease with which a wide range of resources can be found on the internet, as well as the ease with which they can be copied and pasted. It is academic theft since the perpetrator has ”taken” and presented the work of others as his or her own. Manual detection of plagiarism by a human being is difficult, imprecise, and time-consuming because it is difficult for anyone to compare their work to current data. Plagiarism is a big problem in higher education, and it can happen on any topic. Plagiarism detection has been studied in many scientific articles, and methods for recognition have been created utilizing the Plagiarism analysis, Authorship identification, and Near-duplicate detection (PAN) Dataset 2009- 2011. Verbatim plagiarism, according to the researchers, plagiarism is simply copying and pasting. They then moved on to smart plagiarism, which is more challenging to spot since it might include text change, taking ideas from other academics, and translation into a more difficult-to-manage language. Other studies have found that plagiarism can obscure the scientific content of publications by swapping words, removing or adding material, or reordering or changing the original articles. This article discusses the comparative study of plagiarism detection techniques.
Automated medical diagnosis is an important topic, especially in detection and classification of diseases. Malaria is one of the most widespread diseases, with more than 200 million cases, according to the 2016 WHO report. Malaria is usually diagnosed using thin and thick blood smears under a microscope. However, proper diagnosis is difficult, especially in poor countries where the disease is most widespread. Therefore, automatic diagnostics helps in identifying the disease through images of red blood cells, with the use of machine learning techniques and digital image processing. This paper presents an accurate model using a Deep Convolutional Neural Network build from scratch. The paper also proposed three CNN
... Show MoreThe widespread of internet allover the world, in addition to the increasing of the huge number of users that they exchanged important information over it highlights the need for a new methods to protect these important information from intruders' corruption or modification. This paper suggests a new method that ensures that the texts of a given document cannot be modified by the intruders. This method mainly consists of mixture of three steps. The first step which barrows some concepts of "Quran" security system to detect some type of change(s) occur in a given text. Where a key of each paragraph in the text is extracted from a group of letters in that paragraph which occur as multiply of a given prime number. This step cannot detect the ch
... Show More