Drones play a vital role in the fundamental aspects of Industry 4.0 by converting conventional warehouses into intelligent ones, particularly in the realm of barcode scanning. Various potential issues frequently arise during barcode scanning by drones, specifically when the drone camera has difficulty obtaining distinct images due to certain factors, such as distance, capturing the image whilst flying, noise in the environment and different barcode dimensions. In addressing these challenges, this study proposes an approach that combines a proportional–integral–derivative (PID) controller with image processing techniques. The PID controller is responsible for continuously monitoring the camera’s input, detecting the difference between the planned and the real barcode image dimensions, and making immediate changes to the drone position to improve the process of detecting the potential barcode. The aforementioned procedure is implemented on the DJI Tello drone to verify the practical performance of the methodology introduced in this study. Results showed that drones can achieve remarkable barcode scanning performance by incorporating sophisticated computer vision technologies into PID controllers. PID computer vision algorithms are capable of analysing visual data acquired from the drone’s cameras and retrieving barcode information under a variety of situations, such as the size of the barcode, location of the barcode and noise of the warehouse environment.
An atomic force microscope (AFM) technique is utilized to investigate the polystyrene (PS) impact upon the morphological properties of the outer as well as inner surface of poly vinyl chloride (PVC) porous fibers. Noticeable a new shape of the nodules at the outer and inner surfaces, namely "Crater nodules", has been observed. The fibers surface images have seen to be regular nodular texture at the skin of the inner and outer surfaces at low PS content. At PS content of 6 wt.%, the nodules structure was varied from Crater shape to stripe. While with increasing of PS content, the pore density reduces as a result of increasing the size of the pore at the fiber surface. Moreover, the test of 3D-AFM images shows that the roughness of both su
... Show MoreThe consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying
... Show MoreThe use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements). The percentage of the compress
... Show MoreThe goal of our study is to perform detailed multiband surface photometry of the spiral galaxy NGC 4448 and its brightest star-forming regions. The structure and composition of the stellar population in the surface brightness galaxy NGC 4448 was studied using BVR CCD photometry. The observations were obtained on the 1.88 m optical telescope of Kottamia Astronomical Observatory (KAO), Egypt. A two-dimensional decomposition of the galaxy bulge and disk components is carried out. A powerful star forming region is observed near the galactic center. Based on the positions of the various components of the galaxy in two color diagrams. From the observations, the surface brightness profiles, Ellipticity profiles, position angle profiles and colo
... Show MoreNano gamma alumina was prepared by double hydrolysis process using aluminum nitrate nano hydrate and sodium aluminate as an aluminum source, hydroxyle poly acid and CTAB (cetyltrimethylammonium bromide) as templates. Different crystallization temperatures (120, 140, 160, and 180) 0C and calcinations temperatures (500, 550, 600, and 650) 0C were applied. All the batches were prepared at PH equals to 9. XRD diffraction technique and infrared Fourier transform spectroscopy were used to investigate the phase formation and the optical properties of the nano gamma alumina. N2 adsorption-desorption (BET) was used to measure the surface area and pore volume of the prepared nano alumina, the particle size and the
... Show MoreThe research aims to find approximate solutions for two dimensions Fredholm linear integral equation. Using the two-variables of the Bernstein polynomials we find a solution to the approximate linear integral equation of the type two dimensions. Two examples have been discussed in detail.
The Internet of Things (IoT) has significantly transformed modern systems through extensive connectivity but has also concurrently introduced considerable cybersecurity risks. Traditional rule-based methods are becoming increasingly insufficient in the face of evolving cyber threats. This study proposes an enhanced methodology utilizing a hybrid machine-learning framework for IoT cyber-attack detection. The framework integrates a Grey Wolf Optimizer (GWO) for optimal feature selection, a customized synthetic minority oversampling technique (SMOTE) for data balancing, and a systematic approach to hyperparameter tuning of ensemble algorithms: Random Forest (RF), XGBoost, and CatBoost. Evaluations on the RT-IoT2022 dataset demonstrat
... Show More