Through recent years many researchers have developed methods to estimate the self-similarity and long memory parameter that is best known as the Hurst parameter. In this paper, we set a comparison between nine different methods. Most of them use the deviations slope to find an estimate for the Hurst parameter like Rescaled range (R/S), Aggregate Variance (AV), and Absolute moments (AM), and some depend on filtration technique like Discrete Variations (DV), Variance versus level using wavelets (VVL) and Second-order discrete derivative using wavelets (SODDW) were the comparison set by a simulation study to find the most efficient method through MASE. The results of simulation experiments were shown that the performance of the meth
... Show MoreRecently, biometric technologies are used widely due to their improved security that decreases cases of deception and theft. The biometric technologies use physical features and characters in the identification of individuals. The most common biometric technologies are: Iris, voice, fingerprint, handwriting and hand print. In this paper, two biometric recognition technologies are analyzed and compared, which are the iris and sound recognition techniques. The iris recognition technique recognizes persons by analyzing the main patterns in the iris structure, while the sound recognition technique identifies individuals depending on their unique voice characteristics or as called voice print. The comparison results show that the resul
... Show MoreThe presented work includes the Homotopy Transforms of Analysis Method (HTAM). By this method, the approximate solution of nonlinear Navier- Stokes equations of fractional order derivative was obtained. The Caputo's derivative was used in the proposed method. The desired solution was calculated by using the convergent power series to the components. The obtained results are demonstrated by comparison with the results of Adomain decomposition method, Homotopy Analysis method and exact solution, as explained in examples (4.1) and (4.2). The comparison shows that the used method is powerful and efficient.
Power-electronic converters are essential elements for the effective interconnection of renewable energy sources to the power grid, as well as to include energy storage units, vehicle charging stations, microgrids, etc. Converter models that provide an accurate representation of their wideband operation and interconnection with other active and passive grid components and systems are necessary for reliable steady state and transient analyses during normal or abnormal grid operating conditions. This paper introduces two Laplace domain-based approaches to model buck and boost DC-DC converters for electromagnetic transient studies. The first approach is an analytical one, where the converter is represented by a two-port admittance model via mo
... Show MoreThis paper introduces the Multistep Modified Reduced Differential Transform Method (MMRDTM). It is applied to approximate the solution for Nonlinear Schrodinger Equations (NLSEs) of power law nonlinearity. The proposed method has some advantages. An analytical approximation can be generated in a fast converging series by applying the proposed approach. On top of that, the number of computed terms is also significantly reduced. Compared to the RDTM, the nonlinear term in this method is replaced by related Adomian polynomials prior to the implementation of a multistep approach. As a consequence, only a smaller number of NLSE computed terms are required in the attained approximation. Moreover, the approximation also converges rapidly over a
... Show MoreIn any security system, we need a high level of security, to maintain the secrecy of important data. Steganography is one of the security systems that are hiding secret information within a certain cover (video, image, sound, text), so that the adversary does not suspect the existence of such confidential information. In our proposed work will hide secret messages (Arabic or English) text in the Arabic cover text, we employed the RNA as a tool for encoding the secret information and used non-printed characters to hide these codes. Each character (English or Arabic) is represented by using only six bits based on secret tables this operation has provided a good compression since each Arabic character needs 16 bits and each English characte
... Show MoreMaking the data secure is more and more concerned in the communication era. This research is an attempt to make a more secured information message by using both encryption and steganography. The encryption phase is done with dynamic DNA complementary rules while DNA addition rules are done with secret key where both are based on the canny edge detection point of the cover image. The hiding phase is done after dividing the cover image into 8 blocks, the blocks that are used for hiding selected in reverse order exception the edge points. The experiments result shows that the method is reliable with high value in PSNR
A novel median filter based on crow optimization algorithms (OMF) is suggested to reduce the random salt and pepper noise and improve the quality of the RGB-colored and gray images. The fundamental idea of the approach is that first, the crow optimization algorithm detects noise pixels, and that replacing them with an optimum median value depending on a criterion of maximization fitness function. Finally, the standard measure peak signal-to-noise ratio (PSNR), Structural Similarity, absolute square error and mean square error have been used to test the performance of suggested filters (original and improved median filter) used to removed noise from images. It achieves the simulation based on MATLAB R2019b and the resul
... Show MoreThis work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show MoreImages are usually corrupted by type of noise called "mixed noise ", traditional
methods do not give good results with the mixed noise (impulse with Gaussian
noise) .In this paper a Simple Cascade Method (SCM) will be applied for mixed
noise removal (Gaussian plus impulse noise) and compare it's performance with
results that acquired when using the alpha trimmed mean filter and wavelet in
separately. The performances are evaluated in terms of Mean Squane Error (MSE)
and Peak Signal to Noise Ratio (PSNR).