Preferred Language
Articles
/
MRbmuIoBVTCNdQwCLKT9
The Product of Automorphic Weighted Composition Operators on Hardy Space H <sup>2</sup>
...Show More Authors
Abstract<p>Let <inline-formula> <tex-math><?CDATA $n\in {\mathbb{N}},{p}_{i}\in {\rm{U}},{\alpha }_{{P}_{i}}(z)=\frac{{p}_{i}-z}{1-{\bar{p}}_{i}z}(z\in {\rm{U}})$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mrow> <mi>n</mi> <mo>∈</mo> <mi>ℕ</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>∈</mo> <mi mathvariant="normal">U</mi> <mo>,</mo> <msub> <mi>α</mi> <mrow> <msub> <mi>P</mi> <mi>i</mi> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>−</mo> <mi>z</mi> </mrow> <mrow> <mn>1</mn> <mo>−</mo> <msub> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> <mi>i</mi> </msub> <mi>z</mi> </mrow> </mfrac> <mo stretchy="false">(</mo> <mi>z</mi> <mo>∈</mo> <mi mathvariant="normal">U</mi> <mo stretchy="false">)</mo> </mrow> </math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JPCS_1530_1_012045_ieqn1.gif" xlink:type="simple"></inline-graphic> </inline-formula>, and let <inline-formula> <tex-math><?CDATA ${f}_{1}\in {H}^{\infty },i=1,\ldots,n$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> <mo>∈</mo> <msup> <mi>H</mi> <mi>∞</mi> </msup> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>n</mi> </mrow> </math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JPCS_1530_1_012045_ieqn2.gif" xlink:type="simple"></inline-graphic> </inline-formula>. We discuss the relation between the points <italic>p<sub>i</sub> </italic> in U and the functions <italic>f<sub>i</sub> </italic> in U and the properties of the product of automorphic weighted composition operators <inline-formula> <tex-math><?CDATA ${W}_{{f}_{1},{\alpha }_{{p}_{1}}}\,{W}_{{f}_{2},{\alpha }_{{p}_{2}}}\ldots {W}_{{f}_{i},{\alpha }_{pi}}$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mrow> <msub> <mi>W</mi> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>α</mi> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> </mrow> </msub> </mrow> </msub> <mspace width="0.25em"></mspace> <msub> <mi>W</mi> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>α</mi> <mrow> <msub> <mi>p</mi> <mn>2</mn> </msub> </mrow> </msub> </mrow> </msub> <mo>…</mo> <msub> <mi>W</mi> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>α</mi> <mrow> <mi>p</mi> <mi>i</mi> </mrow> </msub> </mrow> </msub> </mrow> </math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JPCS_1530_1_012045_ieqn3.gif" xlink:type="simple"></inline-graphic> </inline-formula> on Hardy space H<sup>2</sup>. In fact, it is very nice connection between analytic function theory and operator theory. In this paper, we give the sufficient and necessary conditions to be normal, unitary, hermitian operator on <italic>H</italic> <sup>2</sup> and we shall present the shape of the numerical range of it.</p>
Scopus Crossref
View Publication