Preferred Language
Articles
/
MRamb4cBVTCNdQwChEop
Emotion Recognition System Based on Hybrid Techniques

Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In addition, a bi-modal system for recognising emotions from facial expressions and speech signals is presented. This is important since one modality may not provide sufficient information or may not be available for any reason beyond operator control. To perform this, decision-level fusion is performed using a novel way for weighting according to the proportions of facial and speech impressions. The results show an average accuracy of 93.22 %.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jun 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
comparison Bennett's inequality and regression in determining the optimum sample size for estimating the Net Reclassification Index (NRI) using simulation

 Researchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the dat

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
The Performance Differences between Using Recurrent Neural Networks and Feedforward Neural Network in Sentiment Analysis Problem

 With the spread use of internet, especially the web of social media, an unusual quantity of information is found that includes a number of study fields such as psychology, entertainment, sociology, business, news, politics, and other cultural fields of nations. Data mining methodologies that deal with social media allows producing enjoyable scene on the human behaviour and interaction. This paper demonstrates the application and precision of sentiment analysis using traditional feedforward and two of recurrent neural networks (gated recurrent unit (GRU) and long short term memory (LSTM)) to find the differences between them. In order to test the system’s performance, a set of tests is applied on two public datasets. The firs

... Show More
Scopus (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Dec 29 2017
Journal Name
Al-khwarizmi Engineering Journal
Design and Implementation of a Proposal Network Firewall

 

In today's world, most business, regardless of size, believe that access to Internet is imperative if they are going to complete effectively. Yet connecting a private computer (or a network) to the Internet can expose critical or confidential data to malicious attack from anywhere in the world since unprotected connections to the Internet (or any network topology) leaves the user computer vulnerable to hacker attacks and other Internet threats. Therefore, to provide high degree of protection to the network and network's user, Firewall need to be used.

Firewall provides a barrier between the user computer and the Internet (i.e. it prevents unauthor

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
LDPC CODED MULTIUSER MC-CDMA PERFORMANCE OVERMULTIPATH RAYLEIGH FADING CHANNEL

This work presents the simulation of a Low density Parity Check (LDPC) coding scheme with
multiuserMulti-Carrier Code Division Multiple Access (MC-CDMA) system over Additive White
Gaussian Noise (AWGN) channel and multipath fading channels. The decoding technique used in
the simulation was iterative decoding since it gives maximum efficiency with ten iterations.
Modulation schemes that used are Phase Shift Keying (BPSK, QPSK and 16 PSK), along with the
Orthogonal Frequency Division Multiplexing (OFDM). A 12 pilot carrier were used in the estimator
to compensate channel effect. The channel model used is Long Term Evolution (LTE) channel with
Technical Specification TS 25.101v2.10 and 5 MHz bandwidth including the chan

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Mobile position estimation using artificial neural network in CDMA cellular systems

Using the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result

... Show More
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Mobile Position Estimation using Artificial Neural Network in CDMA Cellular Systems

Using the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through tha

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Modeling The Power Grid Network Of Iraq

Recently, the theory of Complex Networks gives a modern insight into a variety of applications in our life. Complex Networks are used to form complex phenomena into graph-based models that include nodes and edges connecting them. This representation can be analyzed by using network metrics such as node degree, clustering coefficient, path length, closeness, betweenness, density, and diameter, to mention a few. The topology of the complex interconnections of power grids is considered one of the challenges that can be faced in terms of understanding and analyzing them. Therefore, some countries use Complex Networks concepts to model their power grid networks. In this work, the Iraqi Power Grid network (IPG) has been modeled, visua

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Efficient Algorithm for Solving Fuzzy Singularly Perturbed Volterra Integro-Differential Equation

     In this paper, we design a fuzzy neural network to solve fuzzy singularly perturbed Volterra integro-differential equation by using a High Performance Training Algorithm such as the Levenberge-Marqaurdt (TrianLM) and the sigmoid function of the hidden units which is the hyperbolic tangent activation function. A fuzzy trial solution to fuzzy singularly perturbed Volterra integro-differential equation is written as a sum of two components. The first component meets the fuzzy requirements, however, it does not have any fuzzy adjustable parameters. The second component is a feed-forward fuzzy neural network with fuzzy adjustable parameters. The proposed method is compared with the analytical solutions. We find that the proposed meth

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Feb 01 2015
Journal Name
Journal Of Engineering
Planning of Distribution Networks in Baghdad City

Planning of electrical distribution networks is considered of highest priority at the present time in Iraq, due to the huge increase in electrical demand and expansions imposed on distribution networks as a result of the great and rapid urban development.

Distribution system planning simulates and studies the behavior of electrical distribution networks under different operating conditions. The study provide understanding of the existing system and to prepare a short term development plan or a long term plan used to guide system expansion and future investments needed for improved network performance.

The objective of this research is the planning of Al_Bayaa 11 kV distribution network in Baghdad city bas

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 10 2018
Journal Name
Day 1 Mon, December 10, 2018
Wellbore Trajectory Optimization Using Rate of Penetration and Wellbore Stability Analysis

Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.

In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation

... Show More
View Publication