Preferred Language
Articles
/
MBfdsJIBVTCNdQwCBb4c
Automatically Recognizing Emotions in Text Using Prediction by Partial Matching (PPM) Text Compression Method
...Show More Authors

In this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts involving Happiness and Sadness emotions (with 80% accuracy for Aman’s dataset and 76.7% for Alm’s datasets) and texts involving Ekman’s six basic emotions for the LiveJournal dataset (87.8% accuracy). Results also show that the method outperforms traditional feature-based classifiers such as Naïve Bayes and SMO in most cases in terms of accuracy, precision, recall and F-measure.

Scopus Clarivate Crossref
View Publication
Publication Date
Wed May 04 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Knee Meniscus Segmentation and Tear Detection Based On Magnitic Resonacis Images: A Review of Literature
...Show More Authors

The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when

... Show More
Publication Date
Thu Apr 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimate Complete the Survival Function for Real Data of Lung Cancer Patients
...Show More Authors

 In this paper, we estimate the survival function for the patients of lung cancer using different nonparametric estimation methods depending on sample from complete real data which describe the duration of survivor for patients who suffer from the lung cancer based on diagnosis of disease or the enter of patients in a hospital for period of two years (starting with 2012 to the end of 2013). Comparisons between the mentioned estimation methods has been performed using statistical indicator mean squares error, concluding that the survival function for the lung cancer by using shrinkage method is the best

View Publication Preview PDF
Publication Date
Tue Dec 30 2008
Journal Name
Al-kindy College Medical Journal
Rate of Schneiderian First Rank Symptoms among Newly Diagnosed Schizophrenic Patients
...Show More Authors

Background: Schneiderian first rank symptoms are
considered highly valuable in the diagnosis of
schneideria.
They are more evident in the acute phase of the
disorder and fading gradually with time. Many studies
have shown that the rate of these symptoms are
variable in different countries and are colored by
cultural beliefs and values.
Objectives: To find out the rate of Schneiderian first
rank symptoms among newly diagnosed schizophrenic
patients, to assess which symptom(s) might
predominate in those patients, and to find out if there
is/are any correlation(s) between the occurrence of
these symptoms and the sex of the patients.
Methods: Out of twenty-four patients with no past
psychiatric hi

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 16 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Filter Bases and j-ω-Perfect Mappings
...Show More Authors

This paper consist some new generalizations of some definitions such: j-ω-closure converge to a point,  j-ω-closure directed toward a set, almost  j-ω-converges to a set, almost  j-ω-cluster point, a set  j-ω-H-closed relative, j-ω-closure continuous mappings, j-ω-weakly continuous mappings, j-ω-compact mappings, j-ω-rigid a set, almost j-ω-closed mappings and  j-ω-perfect mappings. Also, we prove several results concerning it, where j ÃŽ{q, δ,a, pre, b, b}.

 

View Publication Preview PDF
Crossref
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
On Closed Quasi Principally Injective Acts over Monoids
...Show More Authors

The concept of closed quasi principally injective acts over monoids is introduced ,which signifies a generalization for the quasi principally injective as well as for the closed quasi injective acts. Characterization of this concept is intended to show the behavior of a closed quasi principally injective property. At the same time, some properties of closed quasi principally injective acts are examined in terms of their endomorphism monoid. Also, the characterization of a closed self-principally injective monoid is given in terms of its annihilator. The relationship between the following concepts is also studied; closed quasi principally injective acts over monoids, Hopfian, co Hopfian, and directly finite property. Ultimately, based on

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimate the Parameters and Related Probability Functions for Data of the Patients of Lymph Glands Cancer via Birnbaum-Saunders Model
...Show More Authors

 In this paper,we estimate the parameters and related probability functions, survival function, cumulative distribution function , hazard function(failure rate) and failure  (death) probability function(pdf) for two parameters Birnbaum-Saunders distribution which is fitting the complete data for the patients of  lymph glands cancer. Estimating the parameters (shape and scale) using (maximum likelihood , regression quantile and shrinkage) methods and then compute the value of mentioned related probability  functions depending on sample from real data which describe the duration of survivor for patients who suffer from the lymph glands cancer based on diagnosis of disease or the inter of patients in a hospital for perio

... Show More
View Publication Preview PDF