This study aimed to determine the radioactivity and radiation hazard indicators of rice samples potentially for human consumption. Gamma spectroscopy was used to calculate the specific activity of natural and artificial radionuclides (238U, 232Th, 40K, and 137Cs) in local and imported rice samples collected from local markets in Baghdad Governorate, Iraq, in addition to various radiological hazard indices. The radionuclide concentrations in the samples varied from 2.123 ± 1.457 Bq/kg to 13.032 ± 3.610 Bq/kg for 238U, 2.906 ± 1.705 Bq/kg to 17.290 ± 4.158 Bq/kg for 232Th, 55.161 ± 7.427 Bq/kg to 155.897 ± 12.486 Bq/kg for 40K, and 0.840 ± 0.916 Bq/kg to 5.473 ± 2.339 Bq/kg for 137Cs. The average results for the radiological hazard indices were 24.292 ± 4.855 Bq/kg, 11.579 nGy/h, 0.378 nGy/h, 0.057 mSv/y, 0.014 mSv/y, 0.181, 0.082, and 0.066 for Raeq, Dγ, Dγ for 137Cs, AEDEin, AEDEout, Iγ, Hin, and Hex, respectively. The values obtained from the current study indicate that the concentrations of radionuclides and the hazard indices in the rice samples studied are less than globally permissible limits. Therefore, rice consumption is safe from a radiological perspective and does not threaten human health.
Realistic implementation of nanofluids in subsurface projects including carbon geosequestration and enhanced oil recovery requires full understanding of nanoparticles (NPs) adsorption behaviour in the porous media. The physicochemical interactions between NPs and between the NP and the porous media grain surface control the adsorption behavior of NPs. This study investigates the reversible and irreversible adsorption of silica NPs onto oil-wet and water-wet carbonate surfaces at reservoir conditions. Each carbonate sample was treated with different concentrations of silica nanofluid to investigate NP adsorption in terms of nanoparticles initial size and hydrophobicity at different temperatures, and pressures. Aggregation behaviour and the
... Show MoreA novel demountable shear connector for precast steel-concrete composite bridges is presented. The connector uses high-strength steel bolts, which are fastened to the top flange of the steel beam with the aid of a special locking nut configuration that prevents bolts from slipping within their holes. Moreover, the connector promotes accelerated construction and overcomes the typical construction tolerance issues of precast structures. Most importantly, the connector allows bridge disassembly. Therefore, it can address different bridge deterioration scenarios with minimum disturbance to traffic flow including the following: (1) precast deck panels can be rapidly uplifted and replaced; (2) connectors can be rapidly removed and replaced; and (
... Show MoreThis study examined the adsorption behavior of anionic dye (orange G) from aqueous solution onto the raw and activated a mixture of illite, kaolinite and chlorite clays from area of Zorbatiya (east of Iraq).The chemical treatment involved alkali and acid activation. The alkali activation obtained by treated the raw clay (RC) with 5M NaOH (ACSO) and the acid activation founded by treated it with 0.25M HCl (ACH) and 0.25M (ACS). The thermal treatment carried out by calcination the produce activated clay at 750oC for acid activation and 105oC for alkali activation. Batch
... Show MoreIn the present study, five derivatives have been designed to be synthesized as possible mutual prodrugs for 5-Fluorouracil (5-FU) and non steroidal anti-inflammatory drugs (NSAIDs) to selectively deliver the drugs into the cancer cells. The synthesis of the target compounds were accomplished following multistep reaction procedures, the chemical reaction followed up and the purity of the products were checked by TLC. The structure of the final compounds and their intermediates were confirmed by their melting points, infrared spectroscopy and elemental microanalysis, the hydrolysis of compound III was studied using HPLC technique. According to the results mentioned above, compounds (I−V) can be good candidates as possible mutual prod
... Show MoreA particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.