The present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) membrane for heavy metal removal from wastewater and study the factors affecting the performance of these two membranes: feed concentrations for heavy metal ions, pressure, and flow rate. The experimental results showed, heavy metals concentration in permeate increase with raise in feed concentrations, decline with increase in flow rate. The raise of pressure, heavy metals concentration decreases for RO membrane, but for NF membrane the concentration decrease and then at high pressure increase. The rejection percentage for chromium in NF and RO is 99.7% and 99.9%, for copper is 98.4% and 99.3%, for zinc is 97.9% and 99.5%, for nickel is 97.2% and 99.5% respectively. For a synthetic electroplating wastewater, the maximum recovery was 70.7% and 48.9% for NF and RO respectively.In general, polyamide nanofiltration and reverse osmosis membranes give a high efficiency for removal of chromium, copper, nickel and zinc. A mathematical model describing the process with the existence of the effect of concentration polarization was studied. The agreement between theoretical and experimental results has an accuracy ranging from 86-99.4% for NF and 93-99.9% for RO.
This Book is the second edition that intended to be textbook studied for undergraduate/ postgraduate course in mathematical statistics. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces events and probability review. Chapter Two devotes to random variables in their two types: discrete and continuous with definitions of probability mass function, probability density function and cumulative distribution function as well. Chapter Three discusses mathematical expectation with its special types such as: moments, moment generating function and other related topics. Chapter Four deals with some special discrete distributions: (Discrete Uniform, Bernoulli, Binomial, Poisson, Geometric, Neg
... Show MoreMultilocus haplotype analysis of candidate variants with genome wide association studies (GWAS) data may provide evidence of association with disease, even when the individual loci themselves do not. Unfortunately, when a large number of candidate variants are investigated, identifying risk haplotypes can be very difficult. To meet the challenge, a number of approaches have been put forward in recent years. However, most of them are not directly linked to the disease-penetrances of haplotypes and thus may not be efficient. To fill this gap, we propose a mixture model-based approach for detecting risk haplotypes. Under the mixture model, haplotypes are clustered directly according to their estimated d
ABSTRACT
In this research been to use some of the semi-parametric methods the based on the different function penalty as well as the methods proposed by the researcher because these methods work to estimate and variable selection of significant at once for single index model including (SCAD-NPLS method , the first proposal SCAD-MAVE method , the second proposal ALASSO-MAVE method ) .As it has been using a method simulation time to compare between the semi-parametric estimation method studied , and various simulation experiments to identify the best method based on the comparison criteria (mean squares error(MSE) and average mean squares error (AMSE)).
And the use
... Show MoreGrey system theory is a multidisciplinary scientific approach, which deals with systems that have partially unknown information (small sample and uncertain information). Grey modeling as an important component of such theory gives successful results with limited amount of data. Grey Models are divided into two types; univariate and multivariate grey models. The univariate grey model with one order derivative equation GM (1,1) is the base stone of the theory, it is considered the time series prediction model but it doesn’t take the relative factors in account. The traditional multivariate grey models GM(1,M) takes those factor in account but it has a complex structure and some defects in " modeling mechanism", "parameter estimation "and "m
... Show Moreالمستخلص
يعد تقييم اداء العاملين احد اهم الركائز الاساسية التي يتوقف عليها نجاح أي منظمة تسعى بأن تتطور وتتميز بأنشطتها واداءها وبالأخص المنظمات التي لها خصوصية في عملها كالأجهزة الرقابية التي تعتمد في اداء انشطتها ومسؤولياتها على كفاءة مواردها البشرية, ومن هذا المنطلق يهدف هذا البحث الى تصميم انموذج ثلاثي المحاور (المؤهلات والقدرات، الاداء والانجاز، التعاون والالتزام الوظيفي) ثُماني المستويات
... Show MoreIn this article we derive two reliability mathematical expressions of two kinds of s-out of -k stress-strength model systems; and . Both stress and strength are assumed to have an Inverse Lomax distribution with unknown shape parameters and a common known scale parameter. The increase and decrease in the real values of the two reliabilities are studied according to the increase and decrease in the distribution parameters. Two estimation methods are used to estimate the distribution parameters and the reliabilities, which are Maximum Likelihood and Regression. A comparison is made between the estimators based on a simulation study by the mean squared error criteria, which revealed that the maximum likelihood estimator works the best.
This paper uses classical and shrinkage estimators to estimate the system reliability (R) in the stress-strength model when the stress and strength follow the Inverse Chen distribution (ICD). The comparisons of the proposed estimators have been presented using a simulation that depends on the mean squared error (MSE) criteria.
Abstract
This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per
... Show Moremany painters tried to mix colors with Music by direct employment through colorful musical pieces or the use of multiple instruments and techniques , or vice versa, including the French artist )Robert Stroben(, he transferred the piece of music to be depicted on the painting and worked on the tones of music (Johann Sebastian Bach) by dropping the color on the lines of the musical scale, for example (the C tone) ranging from brown to red ( Tone La A) from gray to orange, and so on, the presence of links and similarity factors between the world of music and the world of colors facilitated the process of linking musical notes with colors, the most famous of which was presented by the world (Newton) in the circle of basic colors and linking
... Show MoreIn this study, we propose a suitable solution for a non-linear system of ordinary differential equations (ODE) of the first order with the initial value problems (IVP) that contains multi variables and multi-parameters with missing real data. To solve the mentioned system, a new modified numerical simulation method is created for the first time which is called Mean Latin Hypercube Runge-Kutta (MLHRK). This method can be obtained by combining the Runge-Kutta (RK) method with the statistical simulation procedure which is the Latin Hypercube Sampling (LHS) method. The present work is applied to the influenza epidemic model in Australia in 1919 for a previous study. The comparison between the numerical and numerical simulation res
... Show More