Preferred Language
Articles
/
LBfwqZEBVTCNdQwCU5jB
Offline Signature Verification Based on Neural Network
...Show More Authors

The investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group of signatures, numbering 70 images, were used. Image preprocessing steps were performed on them, and their features were extracted using the median filter. After that, the eigenvector and eigenvalue were calculated using the PCA algorithm. Then the backpropagation neural network algorithm was applied for training and testing where the performance reached 6.7995e−07 for 82 epochs and the accuracy was 99.98%.

Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
PFDINN: Comparison between Three Back-propagation Algorithms for Pear Fruit Disease Identification
...Show More Authors

     The diseases presence in various species of fruits are the crucial parameter of economic composition and degradation of the cultivation industry around the world. The proposed pear fruit disease identification neural network (PFDINN) frame-work to identify three types of pear diseases was presented in this work. The major phases of the presented frame-work were as the following: (1) the infected area in the pear fruit was detected by using the algorithm of K-means clustering. (2) hybrid statistical features were computed over the segmented pear image and combined to form one descriptor. (3) Feed forward neural network (FFNN), which depends on three learning algorithms of back propagation (BP) training, namely Sca

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Using K-mean Clustering to Classify the Kidney Images
...Show More Authors

      This study has applied digital image processing on three-dimensional C.T. images to detect and diagnose kidney diseases.  Medical images of different cases of kidney diseases were compared with those of   healthy cases. Four different kidneys disorders, such as stones, tumors (cancer), cysts, and renal fibrosis were considered in additional to healthy tissues. This method helps in differentiating between the healthy and diseased kidney tissues. It can detect tumors in its very early stages, before they grow large enough to be seen by the human eye. The method used for segmentation and texture analysis was the k-means with co-occurrence matrix. The k-means separates the healthy classes and the tumor classes, and the affected

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Jul 01 2021
Journal Name
University Of Northampton Pue
Validating a Proposed Data Mining Approach (SLDM) for Motion Wearable Sensors to Detect the Early Signs of Lameness in Sheep
...Show More Authors

View Publication
Publication Date
Wed Jun 29 2022
Journal Name
Journal Of Al-rafidain University College For Sciences ( Print Issn: 1681-6870 ,online Issn: 2790-2293 )
The Use Of Genetic Algorithm In Estimating The Parameter Of Finite Mixture Of Linear Regression
...Show More Authors

The estimation of the parameters of linear regression is based on the usual Least Square method, as this method is based on the estimation of several basic assumptions. Therefore, the accuracy of estimating the parameters of the model depends on the validity of these hypotheses. The most successful technique was the robust estimation method which is minimizing maximum likelihood estimator (MM-estimator) that proved its efficiency in this purpose. However, the use of the model becomes unrealistic and one of these assumptions is the uniformity of the variance and the normal distribution of the error. These assumptions are not achievable in the case of studying a specific problem that may include complex data of more than one model. To

... Show More
View Publication
Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Customers emotional blackmail and reduce it the new product- study of the opinions of a sample of customers who deal with peak economy for household items in najaf al Ashraf
...Show More Authors

The challenges facing today's multi-customer and this is due to the multiplicity of products and speed in launching new products so search came to reveal the  reveal the of the new product classification standards through a relationship (good products, low interest products, useful products and products desired) and the customer emotionally blackmail through deportation (fear, obligation and guilt). dentified the problem of the research in several questions focused on the nature of the relationship between the variables of research, and for that outline supposedly to search it expresses the head of one hypothesis and branched out of which four hypotheses subset, but in order to ensure the validity of the ass

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Science
A Comparison of Different Estimation Methods to Handle Missing Data in Explanatory Variables
...Show More Authors

Missing data is one of the problems that may occur in regression models. This problem is usually handled by deletion mechanism available in statistical software. This method reduces statistical inference values because deletion affects sample size. In this paper, Expectation Maximization algorithm (EM), Multicycle-Expectation-Conditional Maximization algorithm (MC-ECM), Expectation-Conditional Maximization Either (ECME), and Recurrent Neural Networks (RNN) are used to estimate multiple regression models when explanatory variables have some missing values. Experimental dataset were generated using Visual Basic programming language with missing values of explanatory variables according to a missing mechanism at random general pattern and s

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
Classification of Iraqi Children According to Their Nutritional Status Using Fuzzy Logic
...Show More Authors

In this paper, we build a fuzzy classification system for classifying the nutritional status of children under 5 years old in Iraq using the Mamdani method based on input variables such as weight and height to determine the nutritional status of the child. Also, Classifying the nutritional status faces a difficult challenge in the medical field due to uncertainty and ambiguity in the variables and attributes that determine the categories of nutritional status for children, which are relied upon in medical diagnosis to determine the types of malnutrition problems and identify the categories or groups suffering from malnutrition to determine the risks faced by each group or category of children. Malnutrition in children is one of the most

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Mar 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
An Artificial Intelligence Algorithm to Optimize the Classification of the Hepatitis Type
...Show More Authors

Hepatitis is one of the diseases that has become more developed in recent years in terms of the high number of infections. Hepatitis causes inflammation that destroys liver cells, and it occurs as a result of viruses, bacteria, blood transfusions, and others. There are five types of hepatitis viruses, which are (A, B, C, D, E) according to their severity. The disease varies by type. Accurate and early diagnosis is the best way to prevent disease, as it allows infected people to take preventive steps so that they do not transmit the difference to other people, and diagnosis using artificial intelligence gives an accurate and rapid diagnostic result. Where the analytical method of the data relied on the radial basis network to diagnose the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Proposal framework to activate the international accounting procedures for disasters and wars effects in the local environment
...Show More Authors

natural and non-natural disasters, is an environmental challenges the society and the economy as well as a direct and indirect economic affect, and the units are part of the system overlapping among themselves and thus affected by external indicators, directly or indirectly, these direct effects appear in the destruction or damage inflicted by disasters in property , infrastructure , superstructure , accounting information systems and indirectly in the outcome of future business, comes research problem through access to accounting treatments issued by the Federal Office of financial supervision to address the damage caused by the disasters and prepare the missing financial accounts it turns out us that there is negligence of a nu

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparative Study for the Early Detection of the most Important Factors Leading to Preeclampsia
...Show More Authors

 

The aim of this research is to determine the most important and main factors that lead to Preeclampsia. It is also about finding suitable solutions to eradicate these factors and avoid them in order to prevent getting Preeclampsia. To achieve this, a case study sample of (40) patients from Medical City - Oncology Teaching Hospital was used to collect data by a questionnaire which contained (17) reasons to be investigated. The statistical package (SPSS) was used to compare the results of the data analysis through two methods (Radial Bases Function Network) and (Factorial Analysis). Important results were obtained, the two methods determined the same factors that could represent the direct reason which causes Preecla

... Show More
View Publication Preview PDF
Crossref