A stochastic process {Xk, k = 1, 2, ...} is a doubly geometric stochastic process if there exists the ratio (a > 0) and the positive function (h(k) > 0), so that {α 1 h-k }; k ak X k = 1, 2, ... is a generalization of a geometric stochastic process. This process is stochastically monotone and can be used to model a point process with multiple trends. In this paper, we use nonparametric methods to investigate statistical inference for doubly geometric stochastic processes. A graphical technique for determining whether a process is in agreement with a doubly geometric stochastic process is proposed. Further, we can estimate the parameters a, b, μ and σ2 of the doubly geometric stochastic process by using the least squares estimate for Xk and ln Xk, as well as the linear regression method, where μ and σ2 are the mean and variance of X1, respectively. A real-world example is used to demonstrate the process. Furthermore, the estimators' output is evaluated using a real-world example. © 2021 DAV College. All rights reserved.
A new algorithm is proposed to compress speech signals using wavelet transform and linear predictive coding. Signal compression based on the concept of selecting a small number of approximation coefficients after they are compressed by the wavelet decomposition (Haar and db4) at a suitable chosen level and ignored details coefficients, and then approximation coefficients are windowed by a rectangular window and fed to the linear predictor. Levinson Durbin algorithm is used to compute LP coefficients, reflection coefficients and predictor error. The compress files contain LP coefficients and previous sample. These files are very small in size compared to the size of the original signals. Compression ratio is calculated from the size of th
... Show MoreIn this paper a new technique based on dynamic stream cipher algorithm is introduced. The mathematical model of dynamic stream cipher algorithm is based on the idea of changing the structure of the combined Linear Feedback Shift Registers (LFSR's) with each change in basic and message keys to get more complicated encryption algorithm, and this is done by use a bank of LFSR's stored in protected file and we select a collection of LFSR's randomly that are used in algorithm to generate the encryption (decryption) key.
We implement Basic Efficient Criteria on the suggested Key Generator (KG) to test the output key results. The results of applying BEC prove the robustness and efficiency of the proposed stream cipher cryptosystem.
Were arranged this study on two sections, which included first section comparison between markets proposed through the use of transport models and the use of the program QSB for less costs , dependant the optimal solution to chose the suggested market to locate new market that achieve lower costs in the transport of goods from factories (ALRasheed ,ALAmeen , AlMaamun ) to points of sale, but the second part has included comparison of all methods of transport (The least cost method ,Vogels method , Results Approximations method , Total method) depending on the agenda of transport, which includes the market proposed selected from the first section and choose the way in which check the solution first best suited in terms
... Show MoreIn this paper, we introduce new conditions to prove that the existence and boundedness of the solution by convergent sequences and convergent series. The theorem of Krasnoselskii, Lebesgue’s dominated convergence theorem and fixed point theorem are used to get some sufficient conditions for the existence of solutions. Furthermore, we get sufficient conditions to guarantee the oscillatory property for all solutions in this class of equations. An illustrative example is included as an application to the main results.
Activity recognition (AR) is a new interesting and challenging research area with many applications (e.g. healthcare, security, and event detection). Basically, activity recognition (e.g. identifying user’s physical activity) is more likely to be considered as a classification problem. In this paper, a combination of 7 classification methods is employed and experimented on accelerometer data collected via smartphones, and compared for best performance. The dataset is collected from 59 individuals who performed 6 different activities (i.e. walk, jog, sit, stand, upstairs, and downstairs). The total number of dataset instances is 5418 with 46 labeled features. The results show that the proposed method of ensemble boost-based classif
... Show MoreIn this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.
The aim of this research is to use robust technique by trimming, as the analysis of maximum likelihood (ML) often fails in the case of outliers in the studied phenomenon. Where the (MLE) will lose its advantages because of the bad influence caused by the Outliers. In order to address this problem, new statistical methods have been developed so as not to be affected by the outliers. These methods have robustness or resistance. Therefore, maximum trimmed likelihood: (MTL) is a good alternative to achieve more results. Acceptability and analogies, but weights can be used to increase the efficiency of the resulting capacities and to increase the strength of the estimate using the maximum weighted trimmed likelihood (MWTL). In order to perform t
... Show MoreIn this paper, the fuzzy logic and the trapezoidal fuzzy intuitionistic number were presented, as well as some properties of the trapezoidal fuzzy intuitionistic number and semi- parametric logistic regression model when using the trapezoidal fuzzy intuitionistic number. The output variable represents the dependent variable sometimes cannot be determined in only two cases (response, non-response)or (success, failure) and more than two responses, especially in medical studies; therefore so, use a semi parametric logistic regression model with the output variable (dependent variable) representing a trapezoidal fuzzy intuitionistic number.
the model was estimated on simulati
... Show MoreThe using of the parametric models and the subsequent estimation methods require the presence of many of the primary conditions to be met by those models to represent the population under study adequately, these prompting researchers to search for more flexible models of parametric models and these models were nonparametric models.
In this manuscript were compared to the so-called Nadaraya-Watson estimator in two cases (use of fixed bandwidth and variable) through simulation with different models and samples sizes. Through simulation experiments and the results showed that for the first and second models preferred NW with fixed bandwidth fo
... Show MoreCurrently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of
... Show More