Gas hydrate formation is considered one of the major problems facing the oil and gas industry as it poses a significant threat to the production, transportation and processing of natural gas. These solid structures can nucleate and agglomerate gradually so that a large cluster of hydrate is formed, which can clog flow lines, chokes, valves, and other production facilities. Thus, an accurate predictive model is necessary for designing natural gas production systems at safe operating conditions and mitigating the issues induced by the formation of hydrates. In this context, a thermodynamic model for gas hydrate equilibrium conditions and cage occupancies of N2 + CH4 and N2 + CO4 gas mixtures at different compositions is proposed. The van der Waals-Platteeuw thermodynamic theory coupled with the Peng-Robinson equation of state and Langmuir adsorption model are employed in the proposed model. The experimental measurements generated using a cryogenic sapphire cell for the pressure and temperature ranges of (5-25) MPa and (275.5-292.95) K, respectively, were used to evaluate the accuracy of this model. The resulting data show that increasing nitrogen mole percentage in the gas mixtures results in decreasing of equilibrium hydrate temperatures. The deviations between the experimental and predictions are discussed. Furthermore, the cage occupancies for the gas mixtures in hydrate have been evaluated. The results demonstrate an increase in the cage occupancy for both the small and large cavities with pressure.
In this paper ,six new mixed metal ligand complexes are reported with Cephalexin (Ceph.H)as a primary ligand and Dimethylglyoxime (DMG) as secondary ligand with metal Chloride [MCl2 .nH2O. M=Mn(II),Co(II),Cu(II),Ni(II) and Zn(II),n=0-6] ,CrCl3.6H2O.The complexes are of (1:1:1)(Metal:Ligand: Ligand) Stoichiometry.The structures of these complexes are confirmed by using FT-IR and UV- electronic spectroscopies, magnetic moments, melting points, molar conductivity measurements and the metal % analysis revealed that the complexes analyze indicates a four coordinated as (A)=[M(HDMG) (Ceph)] .M=[Ni(II)and Zn(II).Six coordinated as (B) = K2[M(DMG)(CePh)(H2O)]. M= Mn (II),Co(II) and Cu(II) and (C)=[Cr(DMG)(Ceph)]Cl2. Interestingly, the in-vitro anti
... Show MoreA filed experiment was carried out at one of the private farms at Al-Suwaira District, Wasit Governorate during the spring season 2021, in order to evaluate the effect of adding Fulyzme plus (biofertilizer) and the foliar application of green tea extract (organic nutrient) on growth and yield of pepper plant cv. California wonder. A factorial experiment (43) was carried out using RCBD Design with three replicates. The Fulyzme plus treatment was applied with four concentrations (0, 10, 20. and 30 g. L-1). The foliar application of green tea extract was applied with three concentrations which were 0, 2 and 4 ml. L-1. Results revealed significant effects of Fulyzme plus at 30 g. L-1 and the foliar application of green tea extract at
... Show MoreType 1 diabetes mellitus (T1DM) is an autoimmune disease frequently associated with autoimmune thyroid disease (AITD). The study is conducted at the Specialized Center for Endocrinology and Diabetes-Baghdad at Al-karkh side, during December 2013 up to April 2014. In this study, we investigate the prevalence of anti-thyroid peroxidase (anti-TPO) antibody in(80) type1 diabetic patients with (AITD) and (30) healthy controls .Blood samples are taken for investigation of thyroid tests by using Vitek Immunodiagnstic Assay System (VIDAS).Enzeme Linked Immunosorbent Assay (ELISA) is used to detect anti-thyroid antibody(anti-TPO). The results show that age, gender and BMI (body mass index) are similar in both groups, p>0.05. Among 80 type1 diabetic
... Show MoreThis study aims to determine the reasons for the increase in the frequency of sand and dust storms in the Middle East and to identify their sources and mitigate them. A set of climatic data from 60 years (1960–2022) was analyzed. Sand storms in Iraq are a silty sand mature arkose composed of 72.7% sand, 25.1% silt, and 2.19% clay; the clay fraction in dust storms constitutes 70%, with a small amount of silt (20.6%) and sand (9.4%). Dust and sand storms (%) are composed of quartz (49.2, 67.1), feldspar (4.9, 20.9), calcite (38, 5), gypsum (4.8, 0.4), dolomite (0.8, 1.0), and heavy minerals (3.2, 6.6). Increasing temperatures in Iraq, by an average of 2 °C for sixty years, have contributed to an increase in the number of dust storm
... Show More