Preferred Language
Articles
/
HBfQsJIBVTCNdQwC5b4Y
Diabetes Prediction Using Machine Learning
...Show More Authors

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five attributes of the training process. The results of the second experiment showed improvement in the performance of the KNN and the Multilayer Perceptron. The results of the second experiment showed a slight decrease in the performance of the Random Forest with 97.5 % accuracy.

Scopus Crossref
View Publication
Publication Date
Mon Nov 19 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison Study of the Effect of Erlotinib as a Tyrosine Kinase Inhibitor on Electrolyte Levels in Type2 Diabetic and Diabetic Nephropathy
...Show More Authors

Diabetes mellitus can be defined as  a metabolic disorder disease .Complication  of diabetes  are due to diabetic nephropathy .This study was done in vitro to study the effect of different concentrations of erlotinib inhibitor ( tyrosine kinase inhibitor) on electrolyte levels (Mg⁺²,Ca⁺²,Na⁺) in sera of Iraqi patients with  newly diagnosis type2 diabetes and diabetic nephropathy in addition to find the best percentage inhibition for utilizing different concentrations from erlotinib (6.97x10⁻⁷, 9.30x10⁻⁷ ,1.16x10⁻⁶,1.39x10⁻⁶ ,1.62x10⁻⁵ )molar  on electrolyte levels . This study was conducted in The National Diabetes Ce

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Estimation of Apelin Levels in Iraqi Patients with Type II Diabetic Peripheral Neuropathy
...Show More Authors

Diabetes mellitus type 2 (T2DM) is a chronic and progressive condition, which affects people all around the world. The risk of complications increases with age if the disease is not managed properly. Diabetic neuropathy is caused by excessive blood glucose and lipid levels, resulting in nerve damage. Apelin is a peptide hormone that is found in different human organs, including the central nervous system and adipose tissue. The aim of this study is to estimate Apelin levels in diabetes type 2 and Diabetic peripheral Neuropathy (DPN) Iraqi patients and show the extent of peripheral nerve damage. The current study included 120 participants: 40 patients with Diabetes Mellitus, 40 patients with Diabetic peripheral Neuropathy, and 40 healthy

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Wed Sep 11 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Automated Reconstruction and Manual Curation of Amino Acid Biosynthesis Pathways in Sulfolobus solfataricus P2
...Show More Authors

The efficient sequencing techniques have significantly increased the number of genomes that are now available, including the Crenarchaeon Sulfolobus solfataricus P2 genome. The genome-scale metabolic pathways in Sulfolobus solfataricus P2 were predicted by implementing the “Pathway Tools” software using MetaCyc database as reference knowledge base. A Pathway/Genome Data Base (PGDB) specific for Sulfolobus solfataricus P2 was created. A curation approach was carried out regarding all the amino acids biosynthetic pathways. Experimental literatures as well as homology-, orthology- and context-based protein function prediction methods were followed for the curation process. The “PathoLogic”

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri May 01 2020
Journal Name
International Journal Of Advanced Science And Technology
Improved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval
...Show More Authors

Background/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CN

... Show More
Publication Date
Fri Feb 17 2023
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Deploying Facial Segmentation Landmarks for Deepfake Detection
...Show More Authors

Deepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this asp

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Mar 28 2020
Journal Name
Iraqi Journal Of Science
Effect of levels in Dual Tree Complex Wavelet Transform when design Universal image stego-analytic
...Show More Authors

Universal image stego-analytic has become an important issue due to the natural images features curse of dimensionality. Deep neural networks, especially deep convolution networks, have been widely used for the problem of universal image stegoanalytic design. This paper describes the effect of selecting suitable value for number of levels during image pre-processing with Dual Tree Complex Wavelet Transform. This value may significantly affect the detection accuracy which is obtained to evaluate the performance of the proposed system. The proposed system is evaluated using three content-adaptive methods, named Highly Undetetable steGO (HUGO), Wavelet Obtained Weights (WOW) and UNIversal WAvelet Relative Distortion (UNIWARD).
The obtain

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Performance Improvement of Generative Adversarial Networks to Generate Digital Color Images of Skin Diseases
...Show More Authors

     The main task of creating new digital images of different skin diseases is to increase the resolution of the specific textures and colors of each skin disease. In this paper, the performance of generative adversarial networks has been optimized to generate multicolor and histological color digital images of a variety of skin diseases (melanoma, birthmarks, and basal cell carcinomas). Two architectures for generative adversarial networks were built using two models: the first is a model for generating new images of dermatology through training processes, and the second is a discrimination model whose main task is to identify the generated digital images as either real or fake. The gray wolf swarm algorithm and the whale swarm alg

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Feb 24 2022
Journal Name
Journal Of Educational And Psychological Researches
Statistical analysis from a Gender perspective
...Show More Authors

This research is a theoretical study that deals with the presentation of the literature of statistical analysis from the perspective of gender or what is called Engendering Statistics. The researcher relied on a number of UN reports as well as some foreign sources to conduct the current study. Gender statistics are defined as statistics that reflect the differences and inequality of the status of women and men overall domains of life, and their importance stems from the fact that it is an important tool in promoting equality as a necessity for the process of sustainable development and the formulation of national and effective development policies and programs. The empowerment of women and the achievement of equality between men and wome

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Estimating the Parameters of Exponential-Rayleigh Distribution under Type-I Censored Data
...Show More Authors

     This paper discusses estimating the two scale parameters of Exponential-Rayleigh distribution for singly type one censored data which is one of the most important Rights censored data, using the maximum likelihood estimation method (MLEM) which is one of the most popular and widely used classic methods, based on an iterative procedure such as the Newton-Raphson to find estimated values for these two scale parameters by using real data for COVID-19 was taken from the Iraqi Ministry of Health and Environment, AL-Karkh General Hospital. The duration of the study was in the interval 4/5/2020 until 31/8/2020 equivalent to 120 days, where the number of patients who entered the (study) hospital with sample size is (n=785). The number o

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Oct 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Robust M Estimate With Cubic Smoothing Splines For Time-Varying Coefficient Model For Balance Longitudinal Data
...Show More Authors

In this research، a comparison has been made between the robust estimators of (M) for the Cubic Smoothing Splines technique، to avoid the problem of abnormality in data or contamination of error، and the traditional estimation method of Cubic Smoothing Splines technique by using two criteria of differentiation which are (MADE، WASE) for different sample sizes and disparity levels to estimate the chronologically different coefficients functions for the balanced longitudinal data which are characterized by observations obtained through (n) from the independent subjects، each one of them is measured repeatedly by group of  specific time points (m)،since the frequent measurements within the subjects are almost connected an

... Show More
View Publication Preview PDF
Crossref