Preferred Language
Articles
/
HBfQsJIBVTCNdQwC5b4Y
Diabetes Prediction Using Machine Learning
...Show More Authors

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five attributes of the training process. The results of the second experiment showed improvement in the performance of the KNN and the Multilayer Perceptron. The results of the second experiment showed a slight decrease in the performance of the Random Forest with 97.5 % accuracy.

Scopus Crossref
View Publication
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Editorial: Current advances in anti-infective strategies
...Show More Authors

Infectious diseases pose a global challenge, necessitating an exploration of novel methodologies for diagnostics and treatments. Since the onset of the most recent pandemic, COVID-19, which was initially identified as a worldwide health crisis, numerous countries experienced profound disruptions in their healthcare systems. To combat the spread of the COVID-19 pandemic, governments across the globe have mobilized significant efforts and resources to develop treatments and vaccines. Researchers have put forth a multitude of approaches for COVID-19 detection, treatment protocols, and vaccine development, including groundbreaking mRNA technology, among others.

This matter represents not only a scientific endeavor but also an essenti

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Attention Mechanism Based on a Pre-trained Model for Improving Arabic Fake News Predictions
...Show More Authors

     Social media and news agencies are major sources for tracking news and events. With these sources' massive amounts of data, it is easy to spread false or misleading information. Given the great dangers of fake news to societies, previous studies have given great attention to detecting it and limiting its impact. As such, this work aims to use modern deep learning techniques to detect Arabic fake news. In the proposed system, the attention model is adapted with bidirectional long-short-term memory (Bi-LSTM) to identify the most informative words in the sentence. Then, a multi-layer perceptron (MLP) is applied to classify news articles as fake or real. The experiments are conducted on a newly launched Arabic dataset called the Ara

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Dec 08 2021
Journal Name
J. Inf. Hiding Multim. Signal Process.
Predication of Most Significant Features in Medical Image by Utilized CNN and Heatmap.
...Show More Authors

The growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to co

... Show More
View Publication Preview PDF
Scopus (2)
Scopus
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation
...Show More Authors

Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Variant Domination Types for a Complete h-ary Tree
...Show More Authors

Graph  is a tool that can be used to simplify and solve network problems. Domination is a typical network problem that graph theory is well suited for. A subset of nodes in any network is called dominating if every node is contained in this subset, or is connected to a node in it via an edge. Because of the importance of domination in different areas, variant types of domination have been introduced according to the purpose they are used for. In this paper, two domination parameters the first is the restrained and the second is secure domination have been chosn. The secure domination, and some types of restrained domination in one type of trees is called complete ary tree  are determined.

View Publication Preview PDF
Scopus (17)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Apr 02 2014
Journal Name
Journal Of Theoretical And Applied Information Technology
TUMOR BRAIN DETECTION THROUGH MR IMAGES: A REVIEW OF LITERATURE
...Show More Authors

Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin

... Show More
Scopus (45)
Scopus
Publication Date
Thu Nov 01 2012
Journal Name
Ijcsi International Journal Of Computer Science
Implementing a novel approach an convert audio compression to text coding via hybrid technique
...Show More Authors

Compression is the reduction in size of data in order to save space or transmission time. For data transmission, compression can be performed on just the data content or on the entire transmission unit (including header data) depending on a number of factors. In this study, we considered the application of an audio compression method by using text coding where audio compression represented via convert audio file to text file for reducing the time to data transfer by communication channel. Approach: we proposed two coding methods are applied to optimizing the solution by using CFG. Results: we test our application by using 4-bit coding algorithm the results of this method show not satisfy then we proposed a new approach to compress audio fil

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
A noval SVR estimation of figarch modal and forecasting for white oil data in Iraq
...Show More Authors

The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals

... Show More
View Publication Preview PDF
Scopus
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Proposing Robust LAD-Atan Penalty of Regression Model Estimation for High Dimensional Data
...Show More Authors

         The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 30 2023
Journal Name
Iraqi Journal Of Science
Secure Big Data Transmission based on Modified Reverse Encryption and Genetic Algorithm
...Show More Authors

      The modern systems that have been based upon the hash function are more suitable compared to the conventional systems; however, the complicated algorithms for the generation of the invertible functions have a high level of time consumption. With the use of the GAs, the key strength is enhanced, which results in ultimately making the entire algorithm sufficient. Initially, the process of the key generation is performed by using the results of n-queen problem that is solved by the genetic algorithm, with the use of a random number generator and through the application of the GA operations. Ultimately, the encryption of the data is performed with the use of the Modified Reverse Encryption Algorithm (MREA). It was noticed that the

... Show More
View Publication Preview PDF
Scopus Crossref