The estimation of the parameters of linear regression is based on the usual Least Square method, as this method is based on the estimation of several basic assumptions. Therefore, the accuracy of estimating the parameters of the model depends on the validity of these hypotheses. The most successful technique was the robust estimation method which is minimizing maximum likelihood estimator (MM-estimator) that proved its efficiency in this purpose. However, the use of the model becomes unrealistic and one of these assumptions is the uniformity of the variance and the normal distribution of the error. These assumptions are not achievable in the case of studying a specific problem that may include complex data of more than one model. To deal with this type of problem, a mixture of linear regression is used to model such data. In this article, we propose a genetic algorithm-based method combined with (MM-estimator), which is called in this article (RobGA), to improve the accuracy of the estimation in the final stage. We compare the suggested method with robust bi-square (MixBi) in terms of their application to real data representing blood sample. The results showed that RobGA is more efficient in estimating the parameters of the model than the MixBi method with respect to mean square error (MSE) and classification error (CE).
This paper aims to find new analytical closed-forms to the solutions of the nonhomogeneous functional differential equations of the nth order with finite and constants delays and various initial delay conditions in terms of elementary functions using Laplace transform method. As well as, the definition of dynamical systems for ordinary differential equations is used to introduce the definition of dynamical systems for delay differential equations which contain multiple delays with a discussion of their dynamical properties: The exponential stability and strong stability
In this paper we obtain some statistical approximation results for a general class of maxproduct operators including the paused linear positive operators.
Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreWith the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreAssessing the accuracy of classification algorithms is paramount as it provides insights into reliability and effectiveness in solving real-world problems. Accuracy examination is essential in any remote sensing-based classification practice, given that classification maps consistently include misclassified pixels and classification misconceptions. In this study, two imaginary satellites for Duhok province, Iraq, were captured at regular intervals, and the photos were analyzed using spatial analysis tools to provide supervised classifications. Some processes were conducted to enhance the categorization, like smoothing. The classification results indicate that Duhok province is divided into four classes: vegetation cover, buildings,
... Show MoreThis paper includes a comparison between denoising techniques by using statistical approach, principal component analysis with local pixel grouping (PCA-LPG), this procedure is iterated second time to further improve the denoising performance, and other enhancement filters were used. Like adaptive Wiener low pass-filter to a grayscale image that has been degraded by constant power additive noise, based on statistics estimated from a local neighborhood of each pixel. Performs Median filter of the input noisy image, each output pixel contains the Median value in the M-by-N neighborhood around the corresponding pixel in the input image, Gaussian low pass-filter and Order-statistic filter also be used. Experimental results shows LPG-PCA method
... Show Moreتكمن أهمية البحث من الاستفادة من تمرينات الخاصة بمساعدة استعمال أي جهاز تدريبي مثل استعمال جهاز (Vertimax) فإِنَّ هذهِ التدريبات تساعد في تطوير التحمل الخاص وفقًا لما يتطور من قدرات بدنية باستعمال هذا الجهاز، ومن هنا برزت مشكلة البحث انه من المهم للاعب ان يعمل على الروافع الجسم للحصول على اداء افضل في عملية الرمي والحصول على افضل انجاز لهذة الفعالية باستعمال جهاز تدريبي جديد حيث يسلط مقاومات متعددة في ان وا
... Show MoreThis study aimed to extract, purify, and characterize the protease of local Okra Abelmoschus esculentus pods. The extraction process was conducted using ten extraction solutions with different pH and ionic strength values. Phosphate buffer solution with (pH 7, 0.05M, containing 2% sodium chloride) gave the highest activity which was (7.2 Unit/ml) as compared to other solutions, which ranged from 0.8-5.9 Unit/ml. The extracted enzyme purified by several stages. Being, precipitation by gradual addition of Ammonium sulphate from 20 to 85% saturation, then the precipitated enzyme was dialyzed and fractionated through DEAE-Cellulose (22X1.1cm), the enzymic fractions were pooled. The specific activity, purification fold and the enzyme yield value
... Show MoreThe main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
This research aims primarily to highlight personal tax exemptions A comparative study with some Arab and European regulations. And by conducting both theoretical comparative analyses. Most important findings of the study is the need to grant personal and family exemptions that differ according to the civil status of the taxpayer (single or married). In other words, the exemption increases as the number of family members depend on its social sense. Also taking into account some incomes that require a certain effort and looking at the tax rates, it is unreasonable for wages to be subject to the same rates applied to commercial profits.