The estimation of the parameters of linear regression is based on the usual Least Square method, as this method is based on the estimation of several basic assumptions. Therefore, the accuracy of estimating the parameters of the model depends on the validity of these hypotheses. The most successful technique was the robust estimation method which is minimizing maximum likelihood estimator (MM-estimator) that proved its efficiency in this purpose. However, the use of the model becomes unrealistic and one of these assumptions is the uniformity of the variance and the normal distribution of the error. These assumptions are not achievable in the case of studying a specific problem that may include complex data of more than one model. To deal with this type of problem, a mixture of linear regression is used to model such data. In this article, we propose a genetic algorithm-based method combined with (MM-estimator), which is called in this article (RobGA), to improve the accuracy of the estimation in the final stage. We compare the suggested method with robust bi-square (MixBi) in terms of their application to real data representing blood sample. The results showed that RobGA is more efficient in estimating the parameters of the model than the MixBi method with respect to mean square error (MSE) and classification error (CE).
Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreA substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.
... Show MoreThis paper delves into some significant performance measures (PMs) of a bulk arrival queueing system with constant batch size b, according to arrival rates and service rates being fuzzy parameters. The bulk arrival queuing system deals with observation arrival into the queuing system as a constant group size before allowing individual customers entering to the service. This leads to obtaining a new tool with the aid of generating function methods. The corresponding traditional bulk queueing system model is more convenient under an uncertain environment. The α-cut approach is applied with the conventional Zadeh's extension principle (ZEP) to transform the triangular membership functions (Mem. Fs) fuzzy queues into a family of conventional b
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show More
ملخص البحث:
ان الله تعالى هو الذي خلق جميع المخلوقات ، والذي بيده الموت والحياة وان كل هذه المخلوقات تحتاج الى اوامر ، وهذه الاوامر الالهية وجهها الله لعبادة بوساطة انبياءه ( عليهم السلام) فكانوا هم اول المستسلمين والمنقادين لأوامره ، فجاءت الآيات الكريمة مخاطبة للأنبياء واقوامهم بشكل عام ولنبينا محمد (r) بشكل خاص.
اما عن المضمون البحثي فقد جاءت مادته مقسمة الى ثل
... Show MoreThis paper is specifically a detailed review of the Spatial Quantile Autoregressive (SARQR) model that refers to the incorporation of quantile regression models into spatial autoregressive models to facilitate an improved analysis of the characteristics of spatially dependent data. The relevance of SARQR is emphasized in most applications, including but not limited to the fields that might need the study of spatial variation and dependencies. In particular, it looks at literature dated from 1971 and 2024 and shows the extent to which SARQR had already been applied previously in other disciplines such as economics, real estate, environmental science, and epidemiology. Accordingly, evidence indicates SARQR has numerous benefits compar
... Show MoreFinding Masculinity in the "Great War": An Analytical Study of A Long Long Way by Sebastian Barry Abstract This paper intends to show the relation between war and masculinity, through drawing a sketch of the masculine identity of the soldiers during the First World War (also known as the Great War). It studies the association between “ideal manhood” and wartime duties. The paper travels though the experience of Willie Dunne, a young Irish soldier in A Long Long Way (2005) by the Irish writer, Sebastian Barry. Through the paper, the researcher traces the social and familial pressures that lead Willie to enlist in the army, and to experience the atrocities of the First World War in order to search for his masculinity. Raywne Connell's co
... Show MoreAudio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to
... Show More This study includes Estimating scale parameter, location parameter and reliability function for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).
Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)
... Show MorePraise be to God, Lord of the worlds, and prayers and peace be upon our master Muhammad and upon his family and companions as a whole.
The topic of attention was drawn to the attention of the speakers, as it made me ponder it carefully, and my goal in that is to know the reason for the interest of the speakers and their care for it, and to clarify from their books the purpose of making this topic one of the advanced investigations with them.
The idea of writing a paper on the subject of consideration was not absent from my thinking, because I saw the attention of speakers on this issue, as they made it one of the first issues that they deal with studying in their work
... Show More