Preferred Language
Articles
/
Fhb1xYcBVTCNdQwCjmG-
theoretical study of the drift velocity of electron in sf6-n2
...Show More Authors

Publication Date
Wed Jan 01 2014
Journal Name
كلية التربية -الجامعة المستنصرية
study the electron drift velocity in gas mixtures of SF6 with N2 obtained from Boltzmann equation analysis
...Show More Authors

Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Theoretical Study for the Electron Drift Velocity in Sf6 Gas and Its Mixture with Nitrogen
...Show More Authors

 Calculations and predication a theoretical formulas for the electron drift velocity in a gas medium are achieved to deduced the electron distribution function for different gas concentrations. The calculations are achieved by using the numerical solution for  Boltzmann transport equation in two term approximation, using the NOMAD  program for the drift velocity in a gas medium. It's necessary to note that the solution is essentially depending upon the elastic and inelastic collision cross section. In order to fixe a good accuracy for the using cross section it's necessary to calculate the electron distribution function and therefore study their behavior. Results about the electron drift velocity show that a decreasing pro

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2013
Journal Name
كلية التربية الجامعة المستنصرية
Study the electron drift velocity in gas mixtures of CF3I with N2 obtained from Boltzmann equation analysis
...Show More Authors

Publication Date
Tue Jan 01 2013
Journal Name
كلية التربية-الجامعة المستنصرية
Study the drift velocity of electron in mixtures Cf4,O2 and Ar
...Show More Authors

Publication Date
Sat Jan 01 2022
Journal Name
3rd International Scientific Conference Of Alkafeel University (iscku 2021)
Study the effect of mixing N2 with SF6 gas on electron transport coefficients
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of Chemical,biological And Physical Sciences
Study the Electron Drift Velocity in Carbon Dioxide Gas Obtained From Boltzmann Equation Analysis‏
...Show More Authors

Publication Date
Fri Jan 01 2016
Journal Name
مجلة المستنصرية للعلوم والتربية
Calculation of Electron Drift Velocity in Xenon Gas Using Boltzmann Equation Analysis
...Show More Authors

Publication Date
Fri Jan 01 2016
Journal Name
Journal Of College Of Education
An Investigative Study on the Electron Energy Distribution Function and Electron Transport Coefficients in SF6 -- Ne Gas Mixtures
...Show More Authors

Preview PDF
Publication Date
Sun Sep 15 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study on the Effect of H2 Addition to N2 on EEDF and Electron Transport Coefficients
...Show More Authors

    In this paper, we calculate the electron energy distribution function (EEDF) and transport parameters including the electron mean energy, mobility, drift velocity and diffusion coefficient for the gas mixtures of the H2 and N2 using the EEDF program. It is concentrated on the effect of assorted concentrations of the mixtures on the EEDF and the electron transport coefficients. The work exhibits the variation amongst the different mixtures on the EEDF and the transport parameter. The results are graphically offered and discussed. In this concept, it is shown that for each mixture has a specific impact on EEDF and the transport parameter. The important of this study comes from the usage of these mix

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
Investigation of the Electron Coefficients of (Ar, He, N2, O2) Gases in the Ionosphere
...Show More Authors

In this study, the electron coefficients; Mean energy , Mobility and Drift velocity  of different gases  Ar, He, N2 and O2  in the  ionosphere have been calculated using BOLSIG+ program to check the solution results of Boltzmann equation results, and effect of reduced electric field (E/N) on electronic coefficients. The electric field has been specified in the limited range 1-100 Td. The gases were in the ionosphere layer at an altitude frame 50-2000 km. Furthermore, the mean energy and drift velocity steadily increased with increases in the electric field, while mobility was reduced. It turns out that there is a significant and obvious decrease in mobility as a result of inelastic collisions and in addition lit

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref