Let R be an individual left R-module of the same type as W, with W being a ring containing one. W’s submodules N and K should be referred to as N and K, respectively that K ⊆ N ⊆ W if N/K <<_J (D_j (W)+K)/K, Then K is known as the D J-coessential submodule of Nin W as K⊆_ (Rce) N. Coessential submodule is a generalization of this idea. These submodules have certain interesting qualities, such that if a certain condition is met, the homomorphic image of D J- N has a coessential submodule called D J-coessential submodule.
The purpose of this paper is to introduce dual notions of two known concepts which are semi-essential submodules and semi-uniform modules. We call these concepts; cosemi-essential submodules and cosemi-uniform modules respectively. Also, we verify that these concepts form generalizations of two well-known classes; coessential submodules and couniform modules respectively. Some conditions are considered to obtain the equivalence between cosemi-uniform and couniform. Furthermore, the relationships of cosemi-uniform module with other related concepts are studied, and some conditional characterizations of cosemi-uniform modules are investigated.
Let S be a commutative ring with identity, and A is an S-module. This paper introduced an important concept, namely strongly maximal submodule. Some properties and many results were proved as well as the behavior of that concept with its localization was studied and shown.