The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Transformers (BERT), and FastText embeddings follows our approach, which comprises exhaustive preprocessing operations including stemming, stopword deletion, and ways to address class imbalance. Training and evaluation of the hybrid BiLSTM-CNN model on several benchmark datasets, including SDG-labeled corpora and relevant external datasets like GoEmotion and Ohsumed, help provide a complete assessment of the model’s generalizability. Moreover, this study utilizes zero-shot prompt-based categorization using GPT-3.5/4 and Flan-T5, thereby providing a comprehensive benchmark against current approaches and doing comparative tests using leading models such as Robustly Optimized BERT Pretraining Approach (RoBERTa) and Decoding-enhanced BERT with Disentangled Attention (DeBERTa). Experimental results show that the proposed hybrid model achieves competitive performance due to contextual embeddings, which greatly improve classification accuracy. The study explains model decision processes and improves openness using interpretability techniques, including SHapley Additive exPlanations (SHAP) analysis and attention visualization. These results emphasize the need to incorporate rapid engineering techniques alongside deep learning architectures for effective and interpretable SDG text categorization. With possible effects on more general uses in policy analysis and scientific literature mining, this work offers a scalable and transparent solution for automating the evaluation of SDG research.
One of the most important human diseases that need to be considered in terms of development of the medical engineering devices is cardiovascular disease which is a significant cause of death globally recently. Valvular heart disease is normally treated by restoring or altering heart valves with an artificial one. But the new prosthetic valve designs necessitate testing for durability estimate and failure method. It is significant to simulate the circulation system by the building of a pulse duplicator system. This study is stated by clarifying the parameter and implementation steps of the pulse duplicator system in which the different researchers have utilized the system and tried to explain the design steps of using this system wit
... Show MoreModern agriculture is challenged by soil degradation, nutrient depletion, plant diseases, and excessive dependence on chemical fertilizers and pesticides. By examining different strains of Pantoea, the study highlights their role in promoting plant growth, improving their tolerance to stress, reducing reliance on synthetic agricultural inputs, and contributing to more sustainable and environmentally friendly agricultural practices. Using a combination of practical qualitative methods and reliable quantitative data, the research gathers extensive information on how these microbes impact various crops and key soil health indicators. The improvements in plant growth statistics and nutrient levels are often quite astonishing. The result
... Show MoreCrime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or livin
... Show MoreThis paper deals with constructing mixed probability distribution from mixing exponential
Collapsible soil has a metastable structure that experiences a large reduction in volume or collapse when wetting. The characteristics of collapsible soil contribute to different problems for infrastructures constructed on its such as cracks and excessive settlement found in buildings, railways channels, bridges, and roads. This paper aims to provide an art review on collapse soil behavior all over the world, type of collapse soil, identification of collapse potential, and factors that affect collapsibility soil. As urban grow in several parts of the world, the collapsible soil will have more get to the water. As a result, there will be an increase in the number of wetting collapse problems, so it's very important to com
... Show MoreThe outstanding evidence of phthalimide pharmacophore in securing enhanced biological activities had encouraged further research and development into phthalimide-based derivatives as potential new drugs. In this study, phthalimide core was hybridized with aldehydes giving integrated imines displaying different types of functionalities and at alternating positions. The resulting compounds, therefore, provide an innovative window to explore possible differential biological effects as antioxidants and anticancer agents. A total of sixteen compounds were synthesized, and each was verified by FT-IR, H NMR, C NMR, and MS characterization. Herein, a facile single-step synthesis method was employed substituting the conventional two-step che
... Show More