The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Transformers (BERT), and FastText embeddings follows our approach, which comprises exhaustive preprocessing operations including stemming, stopword deletion, and ways to address class imbalance. Training and evaluation of the hybrid BiLSTM-CNN model on several benchmark datasets, including SDG-labeled corpora and relevant external datasets like GoEmotion and Ohsumed, help provide a complete assessment of the model’s generalizability. Moreover, this study utilizes zero-shot prompt-based categorization using GPT-3.5/4 and Flan-T5, thereby providing a comprehensive benchmark against current approaches and doing comparative tests using leading models such as Robustly Optimized BERT Pretraining Approach (RoBERTa) and Decoding-enhanced BERT with Disentangled Attention (DeBERTa). Experimental results show that the proposed hybrid model achieves competitive performance due to contextual embeddings, which greatly improve classification accuracy. The study explains model decision processes and improves openness using interpretability techniques, including SHapley Additive exPlanations (SHAP) analysis and attention visualization. These results emphasize the need to incorporate rapid engineering techniques alongside deep learning architectures for effective and interpretable SDG text categorization. With possible effects on more general uses in policy analysis and scientific literature mining, this work offers a scalable and transparent solution for automating the evaluation of SDG research.
The skin temperature of the earth’s surface is referred to as the Land Surface Temperature (LST). the availability of long-term and high-quality temperature records is important for various uses that affect people’s lives and livelihoods. Much valid information was provided to this research from remote sensing technology by using Landsat 8 (L8) imagery to estimate LST for Al-Ahdab oil field in Wasit city in Iraq. The aim of this research is to analyze LST variations based on Landsat 8 data for 2022 (January, April, July, and October). ArcMap 10.8 was used to estimate LST results. The results values ranged from (about 10 C in January to about 46 C in July). The results show that LS
Weibull distribution is considered as one of the most widely distribution applied in real life, Its similar to normal distribution in the way of applications, it's also considered as one of the distributions that can applied in many fields such as industrial engineering to represent replaced and manufacturing time ,weather forecasting, and other scientific uses in reliability studies and survival function in medical and communication engineering fields.
In this paper, The scale parameter has been estimated for weibull distribution using Bayesian method based on Jeffery prior information as a first method , then enhanced by improving Jeffery prior information and then used as a se
... Show MoreTotal dissolved solids are at the top of the parameters list of water quality that requires investigations for planning and management, especially for irrigation and drinking purposes. If the quality of water is sufficiently predictable, then appropriate management is possible. In the current study, Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) models were used as indicators of water quality and for the prediction of Total Dissolved Solids (TDS) along the Tigris River, in Baghdad city. To build these models five water parameters were selected from the intakes of four water treatment plants on the Tigris River, for the period between 2013 and 2017. The selected water parameters were Total Dissolved Solids (TDS
... Show MoreBackground: Molars and premolars are considered as the most vulnerable teeth of caries attack, which is related to the morphology of their occlusal surfaces along with the difficulty of plaque removal. different methods were used for early caries detection that provide sensitive, accurate preoperative diagnosis of caries depths to establish adequate preventive measures and avoid premature tooth treatment by restoration. The aim of the present study was to evaluate the clinical sensitivity and specificity rates of DIAGNOdent and visual inspection as opposed to the ICDAS for the detection of initial occlusal caries in noncavitated first permanent molars. Materials and Methods: This study examined 139 occlusal surface of the first permanent
... Show MoreThe - M ultiple mixing ratios of -transitions from levels of 56Fe populated in 56 56 Fe n n Fe ( , ) reactions are calculated by using const. S.T.M. This method has been used in other works [3,7] but with pure transition or with transitions that can be considered as pure transitions، in our work we used This method for mixed - transitions in addition to pure - transitions. The experimental angular distribution coefficients a2 was used from previous works [1] in order to calculet - values. It is clear from the results that the - values are in good agreement or consistent, within associated errors, with those reported previously [1]. The discrepancies that occur are due to inaccuracies existing in the expe
... Show MoreThis research studies the rheological properties ( plastic viscosity, yield point and apparent viscosity) of Non-Newtonian fluids under the effect of temperature using different chemical additives, such as (xanthan gum (xc-polymer), carboxyl methyl cellulose ( High and low viscosity ) ,polyacrylamide, polyvinyl alcohol, starch, Quebracho and Chrome Lignosulfonate). The samples were prepared by mixing 22.5g of bentonite with 350 ml of water and adding the additives in four different concentrations (3, 6, 9, 13) g by using Hamilton Beach mixer. The rheological properties of prepared samples were measured by using Fan viscometer model 8-speeds. All the samples were subjected to Bingham plastic model. The temperature range studi
... Show MoreThe expansion of building blocks at the expense of agricultural land is one of the main problems causing climate change within the urban area of a city. The research came to determine these indicators, as a study was conducted on the expansion of the building blocks in three municipalities in the city of Baghdad for a period of four decades extended in the form of time cycles for the period (1981-2021) and using ArcMap GIS 10.7 technology. Then, the impact of this expansion on temperature rates was evaluated, as they are the most important climatic elements due to their significant effect on the rest of the elements. The results showed a clear, direct relationship between the increase in urban expansion rates and the corresponding r
... Show MoreIn this study, Yogurt was dried and milled, then shaked with distilled water to remove the soluble materials, then again dried and milled. Batch experiments were carried out to remove hexavalent chromium from aqueous solutions. Different parameters were optimized such as amount of adsorbent, treatment time, pH and concentration of adsorbate. The concentrations of Cr6+ in solutions are determined by UV-Visible spectrophotometer. Maximum percentage removal of Cr6+ was 82% at pH 2. Two equilibrium adsorption isotherms mechanisms are tested Langmuir and Freundlich, the results showed that the isotherm obeyed to Freundlich isotherm. Kinetic models were applied to the adsorption of Cr6+ ions on the adsorbents, ps
... Show More