The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Transformers (BERT), and FastText embeddings follows our approach, which comprises exhaustive preprocessing operations including stemming, stopword deletion, and ways to address class imbalance. Training and evaluation of the hybrid BiLSTM-CNN model on several benchmark datasets, including SDG-labeled corpora and relevant external datasets like GoEmotion and Ohsumed, help provide a complete assessment of the model’s generalizability. Moreover, this study utilizes zero-shot prompt-based categorization using GPT-3.5/4 and Flan-T5, thereby providing a comprehensive benchmark against current approaches and doing comparative tests using leading models such as Robustly Optimized BERT Pretraining Approach (RoBERTa) and Decoding-enhanced BERT with Disentangled Attention (DeBERTa). Experimental results show that the proposed hybrid model achieves competitive performance due to contextual embeddings, which greatly improve classification accuracy. The study explains model decision processes and improves openness using interpretability techniques, including SHapley Additive exPlanations (SHAP) analysis and attention visualization. These results emphasize the need to incorporate rapid engineering techniques alongside deep learning architectures for effective and interpretable SDG text categorization. With possible effects on more general uses in policy analysis and scientific literature mining, this work offers a scalable and transparent solution for automating the evaluation of SDG research.
Maximum likelihood estimation method, uniformly minimum variance unbiased estimation method and minimum mean square error estimation, as classical estimation procedures, are frequently used for parameter estimation in statistics, which assuming the parameter is constant , while Bayes method assuming the parameter is random variable and hence the Bayes estimator is an estimator which minimize the Bayes risk for each value the random observable and for square error lose function the Bayes estimator is the posterior mean. It is well known that the Bayesian estimation is hardly used as a parameter estimation technique due to some difficulties to finding a prior distribution.
The interest of this paper is that
... Show MoreIn this paper, there are two main objectives. The first objective is to study the relationship between the density property and some modules in detail, for instance; semisimple and divisible modules. The Addition complement has a good relationship with the density property of the modules as this importance is highlighted by any submodule N of M has an addition complement with Rad(M)=0. The second objective is to clarify the relationship between the density property and the essential submodules with some examples. As an example of this relationship, we studied the torsion-free module and its relationship with the essential submodules in module M.
The purpose of this paper is to statistically classify and categorize Building Information Modelling (BIM)-Facility Management (FM) publications in order to extract useful information related to the adoption and use of BIM in FM.
This study employs a quantitative approach using science mapping techniques to examine BIM-FM publications using Web of Science (WOS) database for the period between 2000 and April 2018.
The findi
Spinal dysraphism is the incomplete fusion of the neural arch, which can be seen as an occult or open neural tube defect. Meningoceles are a form of open neural tube defect characterized by cystic dilatation of the meninges containing cerebrospinal fluid without the involvement of neural tissue. Neurosurgical intervention is necessary in the newborn period since survival in advancing ages is often impossible. Therefore, meningoceles are rarely reported in adulthood. Here, we discussed a case of a 23-year-old female who presented with a meningocele in the lumbosacral area since birth, which had not been operated on. Surgical management and intraoperative findings are also discussed.
Bioaccumulation of heavy metals in the terrestrial invertebrates in Al-Jadriyia district Baghdad- Iraq were investigated. Forth terrestrial invertebrates snails, slug, isopods, and diplopods , were selected for this study. The results showed that all invertebrate groups have the ability in accumulate considerable amounts of heavy metals. Higher levels of zinc and copper were observed in the isopods specimens, it's about ( 60.50±0.58 ) and ( 96.00±0.58 ) ppm respectively , while higher levels of lead were observed in the diplopods specimens ,it's about ( 23.00±1.15 ) ppm ,but the higher levels of both iron and cadmium were observed in snail specimens , it's about ( 590.00±1.15 ) and ( 9.50±1.15 ) ppm respectively .but the
... Show MoreThe electric submersible pump, also known as ESP, is a highly effective artificial lift method widely used in the oil industry due to its ability to deliver higher production rates compared to other artificial lift methods. In principle, ESP is a multistage centrifugal pump that converts kinetic energy into dynamic hydraulic pressure necessary to lift fluids at a higher rate with lower bottomhole pressure, especially in oil wells under certain bottomhole condition fluid, and reservoir characteristics. However, several factors and challenges can complicate the completion and optimum development of ESP deployed wells, which need to be addressed to optimize its performance by maximizing efficiency and minimizing costs and uncertainties. To
... Show MoreCredit card fraud has become an increasing problem due to the growing reliance on electronic payment systems and technological advances that have improved fraud techniques. Numerous financial institutions are looking for the best ways to leverage technological advancements to provide better services to their end users, and researchers used various protection methods to provide security and privacy for credit cards. Therefore, it is necessary to identify the challenges and the proposed solutions to address them. This review provides an overview of the most recent research on the detection of fraudulent credit card transactions to protect those transactions from tampering or improper use, which includes imbalance classes, c
... Show MoreGlobally, the COVID-19 pandemic’s development has presented significant societal and economic challenges. The carriers of COVID-19 transmission have also been identified as asymptomatic infected people. Yet, most epidemic models do not consider their impact when accounting for the disease’s indirect transmission. This study suggested and investigated a mathematical model replicating the spread of coronavirus disease among asymptomatic infected people. A study was conducted on every aspect of the system’s solution. The equilibrium points and the basic reproduction number were computed. The endemic equilibrium point and the disease-free equilibrium point had both undergone local stability analyses. A geometric technique was used
... Show More