The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Transformers (BERT), and FastText embeddings follows our approach, which comprises exhaustive preprocessing operations including stemming, stopword deletion, and ways to address class imbalance. Training and evaluation of the hybrid BiLSTM-CNN model on several benchmark datasets, including SDG-labeled corpora and relevant external datasets like GoEmotion and Ohsumed, help provide a complete assessment of the model’s generalizability. Moreover, this study utilizes zero-shot prompt-based categorization using GPT-3.5/4 and Flan-T5, thereby providing a comprehensive benchmark against current approaches and doing comparative tests using leading models such as Robustly Optimized BERT Pretraining Approach (RoBERTa) and Decoding-enhanced BERT with Disentangled Attention (DeBERTa). Experimental results show that the proposed hybrid model achieves competitive performance due to contextual embeddings, which greatly improve classification accuracy. The study explains model decision processes and improves openness using interpretability techniques, including SHapley Additive exPlanations (SHAP) analysis and attention visualization. These results emphasize the need to incorporate rapid engineering techniques alongside deep learning architectures for effective and interpretable SDG text categorization. With possible effects on more general uses in policy analysis and scientific literature mining, this work offers a scalable and transparent solution for automating the evaluation of SDG research.
A group of acceptance sampling to testing the products was designed when the life time of an item follows a log-logistics distribution. The minimum number of groups (k) required for a given group size and acceptance number is determined when various values of Consumer’s Risk and test termination time are specified. All the results about these sampling plan and probability of acceptance were explained with tables.
A series of experiments were conducted for the first time in Iraq to evaluate the efficiency of five plant leaves extracts (Ibicella lutea, Nerium oleander, Clerodendron inerme, Allium cepa and Eucalyptus spp.) in treating the common carp (Cyprinus carpio) infected with monogenetic trematodes of genera Dactylogyrus. Five different concentrations of such extracts were used to bathe fishes for 5,10,15,20 and 25 minutes. A concentration of 15% A. cepa for 25 minutes of bath exposure was affective in trematode eradication. Extracts of both Eucalyptus and N. oleander at a concentration of 10% each were also affective for ten minutes exposure. Extracts of C. inerme had no any effect on such parasites. On the otherhand, extracts of 1. hitea caused
... Show MoreQuantum dots (QDs) can be defined as nanoparticles (NPs) in which the movement of charge carriers is restricted in all directions. CdTe QDs are one of the most important semiconducting crystals among other various types where it has a direct energy gap of about 1.53 eV. The aim of this study is to exaine the optical and structural properties of the 3MPA capped CdTe QDs. The preparation method was based on the work of Ncapayi et al. for preparing 3MPA CdTe QDs, and hen, the same way was treated as by Ahmed et al. via hydrothermal method by using an autoclave at the same temperature but at a different reaction time. The direct optical energy gap of CdTe QDs is between 2.29 eV and 2.50 eV. The FTIR results confirmed the covalent bonding betwee
... Show MoreIndustrial dyes are major pollutants in wastewater and river water with an initial visible concentration of 1 mg/L. Recent studies have shown the possibility of using polyphenol oxidase in catalytic biological treatment due to its ability to oxidize a large number of dyes and pollutants in wastewater and the flexibility to work in wide ranges of temperature, pH and salinity. It is easy availability as well as the low economic cost resulting from its use in biological treatments, this enzyme polyphenol oxidase was used. The findings in this study showed that the extraction of polyphenol oxidase (PPO) from potato peel was homogenized with potassium phosphate buffer (0.1 M, pH 7) at a ratio of 1:10 (weight: volume) for two min. The res
... Show MoreThe particle-hole state densities have been calculated for 232Th in
the case of incident neutron with , 1 Z Z T T T T and 2 Z T T .
The finite well depth, surface effect, isospin and Pauli correction are
considered in the calculation of the state densities and then the
transition rates. The isospin correction function ( ) iso f has been
examined for different exciton configurations and at different
excitation energies up to 100 MeV. The present results are indicated
that the included corrections have more affected on transition rates
behavior for , , and above 30MeV excitation energy
In the present research the flame retardancy to buildings and industrial foundations which are manufacturing from advanced polymeric composite material was increased by coating it with surface layer included flame retardant material. A(3mm) thick antimony tetroxide was used as a coated layer to retard and prevent the flame spread to the coating surface of polyester resin (SIROPOL 8340-PI) reinforced with hybrid fibers as a woven roving (°45-°0) consist of carbon and kevlar (49) fibers, and exposed it to direct flame generated from gas torch at temperature of (2000ºC), at different exposed distance (10,15,20mm)and study the rang of resistance for this layer and its ability to protec
... Show MoreThe Electric Discharge (EDM) method is a novel thermoelectric manufacturing technique in which materials are removed by a controlled spark erosion process between two electrodes immersed in a dielectric medium. Because of the difficulties of EDM, determining the optimum cutting parameters to improve cutting performance is extremely tough. As a result, optimizing operating parameters is a critical processing step, particularly for non-traditional machining process like EDM. Adequate selection of processing parameters for the EDM process does not provide ideal conditions, due to the unpredictable processing time required for a given function. Models of Multiple Regression and Genetic Algorithm are considered as effective methods for determ
... Show MoreThis research foxed on the effect of fire flame of different burning temperatures (300, 400 and 500)oC on the compressive strength of reactive powder concrete (RPC).The steady state duration of the burning test was (60)min. Local consuming material were used to mixed a RPC of compressive strength around (100) MPa. The tested specimens were reinforced by (3.0) cm hooked end steel fiber of (1100) MPa yield strength. Three steel fiber volume fraction were adopted in this study (0, 1.0and 1.5)% and two cooling process were included, gradual and sudden. It was concluding that increasing burning temperature decreases the residual compressive strength for RPC specimens of(0%) steel fiber volume fraction by (12.16, 19.46&24.49) and (18.20, 27.77 &3
... Show More