The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Transformers (BERT), and FastText embeddings follows our approach, which comprises exhaustive preprocessing operations including stemming, stopword deletion, and ways to address class imbalance. Training and evaluation of the hybrid BiLSTM-CNN model on several benchmark datasets, including SDG-labeled corpora and relevant external datasets like GoEmotion and Ohsumed, help provide a complete assessment of the model’s generalizability. Moreover, this study utilizes zero-shot prompt-based categorization using GPT-3.5/4 and Flan-T5, thereby providing a comprehensive benchmark against current approaches and doing comparative tests using leading models such as Robustly Optimized BERT Pretraining Approach (RoBERTa) and Decoding-enhanced BERT with Disentangled Attention (DeBERTa). Experimental results show that the proposed hybrid model achieves competitive performance due to contextual embeddings, which greatly improve classification accuracy. The study explains model decision processes and improves openness using interpretability techniques, including SHapley Additive exPlanations (SHAP) analysis and attention visualization. These results emphasize the need to incorporate rapid engineering techniques alongside deep learning architectures for effective and interpretable SDG text categorization. With possible effects on more general uses in policy analysis and scientific literature mining, this work offers a scalable and transparent solution for automating the evaluation of SDG research.
KA Hadi, AH Asma’a, IJONS, 2018 - Cited by 1
Concentrations of radon were measured in this study for twenty-four samples of soil distributed in six locations on the north part of Iraq. The radon concentrations in soil samples measured by using alpha-emitters registration that emits from Radon (222Rn) in (CR-39) track detector. The concentrations values were calculated by a comparison with standard samples. The results shows that the radon gas concentrations in Darbandikhan City varies from (16.60-34.04 Bq/m3), Halabja City (16.51-23.32 Bq/m3), Al Sulaimaniya City (17.61-32.25 Bq/m3), Koisnjaq City (22.04-35.65 Bq/m3), Shaqlaua City (21.10-29.10 Bq/m3) and Erbil City (22.30-34.63 Bq/m3). The average radon gas concentration in Al Sulaimaniya and Erbil governorate are (22.30 Bq/m3)
... Show MoreThe removal of commercial orange G dye from its aqueous solution by adsorption on tobacco leaves (TL) was studied in respect to different factor that affected the adsorption process. These factors including the tobacco leaves does, period of orange G adsorption, pH, and initial orange G dye concentration .Different types of isotherm models were used to describe the orange G dye adsorption onto the tobacco leaves. The experimental results were compared using Langmuir, and frundlich adsorption isotherm, the constants for these two isotherm models was determined. The results fitted frundlich model with value of correlation coefficient equal to (0.981). The capacity of adsorption for the orange G dye was carried out using various kinetic models
... Show MoreBiological samples of mother's milk were collected from Iraqi southern provinces(Basrah,Messan,al-Muthana,Thikar)and Baghdad province to measure uranium concentration of the samples by using track technique of fission fragments as a result from uranium atom fission with thermal neutrons from neutrons source 24 I Am-Be with activity 16Ci and neutron flux of 5000 n/cm2.s on using nuclear track detector CR-39 It was found that the high percentage of depleted uranium concentration on the samples from Muthana province , which accounted as 4.183ppm therefore the samples was taken from the provinces (Thikar,Basrah,Baghdad),which was accounted the depleted uranium concentration as following (1.243,2.172,2.875) ppm respectively, with appear a small
... Show MoreNanoparticles (NPs) have unique capabilities that make them an eye-opener opportunity for the upstream oil industry. Their nano-size allows them to flow within reservoir rocks without the fear of retention between micro-sized pores. Incorporating NPs with drilling and completion fluids has proved to be an effective additive that improves various properties such as mud rheology, filtration, thermal conductivity, and wellbore stability. However, the biodegradability of drilling fluid chemicals is becoming a global issue as the discharged wetted cuttings raise toxicity concerns and environmental hazards. Therefore, it is urged to utilize chemicals that tend to break down and susceptible to biodegradation. This research presents the pra
... Show MoreEco-friendly concrete is produced using the waste of many industries. It reduces the fears concerning energy utilization, raw materials, and mass-produced cost of common concrete. Several stress-strain models documented in the literature can be utilized to estimate the ultimate strength of concrete components reinforced with fibers. Unfortunately, there is a lack of data on how non-metallic fibers, such as polypropylene (PP), affect the properties of concrete, especially eco-friendly concrete. This study presents a novel approach to modeling the stress-strain behavior of eco-friendly polypropylene fiber-reinforced concrete (PFRC) using meta-heuristic particle swarm optimization (PSO) employing 26 PFRC various mixtures. The cement was partia
... Show MoreThe fuzzy assignment models (FAMs) have been explored by various literature to access classical values, which are more precise in our real-life accomplishment. The novelty of this paper contributed positively to a unique application of pentagonal fuzzy numbers for the evaluation of FAMs. The new method namely Pascal's triangle graded mean (PT-GM) has presented a new algorithm in accessing the critical path to solve the assignment problems (AP) based on the fuzzy objective function of minimising total cost. The results obtained have been compared to the existing methods such as, the centroid formula (CF) and centroid formula integration (CFI). It has been demonstrated that operational efficiency of this conducted method is exquisitely develo
... Show More