Preferred Language
Articles
/
DkK4vJoBMeyNPGM3ds8C
Towards Accurate SDG Research Categorization: A Hybrid Deep Learning Approach Using Scopus Metadata
...Show More Authors

The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Transformers (BERT), and FastText embeddings follows our approach, which comprises exhaustive preprocessing operations including stemming, stopword deletion, and ways to address class imbalance. Training and evaluation of the hybrid BiLSTM-CNN model on several benchmark datasets, including SDG-labeled corpora and relevant external datasets like GoEmotion and Ohsumed, help provide a complete assessment of the model’s generalizability. Moreover, this study utilizes zero-shot prompt-based categorization using GPT-3.5/4 and Flan-T5, thereby providing a comprehensive benchmark against current approaches and doing comparative tests using leading models such as Robustly Optimized BERT Pretraining Approach (RoBERTa) and Decoding-enhanced BERT with Disentangled Attention (DeBERTa). Experimental results show that the proposed hybrid model achieves competitive performance due to contextual embeddings, which greatly improve classification accuracy. The study explains model decision processes and improves openness using interpretability techniques, including SHapley Additive exPlanations (SHAP) analysis and attention visualization. These results emphasize the need to incorporate rapid engineering techniques alongside deep learning architectures for effective and interpretable SDG text categorization. With possible effects on more general uses in policy analysis and scientific literature mining, this work offers a scalable and transparent solution for automating the evaluation of SDG research.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jun 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Using Random Dynamic Programming in Production Planning with Application in the midland Refineries Company
...Show More Authors

 

Abstract

     This research deals with Building A probabilistic Linear programming model  representing, the operation of production in the Middle Refinery Company (Dura, Semawa, Najaif) Considering the demand of each product (Gasoline, Kerosene,Gas Oil, Fuel Oil ).are random variables ,follows certain probability distribution, which are testing by using Statistical programme (Easy fit), thes distribution are found to be Cauchy distribution ,Erlang distribution ,Pareto distribution ,Normal distribution ,and General Extreme value distribution .              &

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 22 2018
Journal Name
Journal Of Economics And Administrative Sciences
Using Mehar method to change fuzzy cost of fuzzy linear model with practical application
...Show More Authors

  Many production companies suffers from big losses because of  high production cost and low profits for several reasons, including raw materials high prices and no taxes impose on imported goods also consumer protection law deactivation and national product and customs law, so most of consumers buy imported goods because it is characterized by modern specifications and low prices.

  The production company also suffers from uncertainty in the cost, volume of production, sales, and availability of raw materials and workers number because they vary according to the seasons of the year.

  I had adopted in this research fuzzy linear program model with fuzzy figures

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 01 2015
Journal Name
Baghdad Science Journal
Removal of Direct 50 Dyes from Aqueous Solution Using Natural Clay and Organoclay Adsorbents
...Show More Authors

In this study, hexadecyltrimethylammonium bromide (HDMAB) - bentonite was synthesized by placing alkylammonium cation onto bentonite. Adsorption of textile dye such as direct Yellow 50 on natural bentonite and HDMAB -bentonite was investigated. The effects of pH, contact time,dosage clay and temperature were investigated experimentally .The Langmuir and Freundlish isotherms equations were applied to the data and values of parameters of these isotherm equations were evaluated. The study indicated that using 0.2 g of HDMAB (hexadecyltrimethylammonium bromide) lead to increase the percentage removal(R%) from 78% for pure bentonite to 99 %. The optimum pH value for the adsorption experiments was found to be pH=3 and therefore all the experim

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Surface Roughness and Material Removal Rate in Electrochemical Machining Using Taguchi Method
...Show More Authors

Electrochemical machining is one of the widely used non-conventional machining processes to machine complex and difficult shapes for electrically conducting materials, such as super alloys, Ti-alloys, alloy steel, tool steel and stainless steel.  Use of optimal ECM process conditions can significantly reduce the ECM operating, tooling, and maintenance cost and can produce components with higher accuracy. This paper studies the effect of process parameters on surface roughness (Ra) and material removal rate (MRR), and the optimization of process conditions in ECM. Experiments were conducted based on Taguchi’s L9 orthogonal array (OA) with three process parameters viz. current, electrolyte concentration, and inter-electrode gap. Sig

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Tue Mar 29 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Prediction of bearing capacity of driven piles for Basrah governatore using SPT and MATLAB
...Show More Authors

Based on the results of standard penetration tests (SPTs) conducted in Al-Basrah governorate, this research aims to present thematic maps and equations for estimating the bearing capacity of driven piles having several lengths. The work includes drilling 135 boreholes to a depth of 10 m below the existing ground level and three standard penetration tests (SPT) at depths of 1.5, 6, and 9.5 m were conducted in each borehole. MATLAB software and corrected SPT values were used to determine the bearing capacity of driven piles in Al-Basrah. Several-order interpolation polynomials are suggested to estimate the bearing capacity of driven piles, but the first-order polynomial is considered the most straightforward. Furthermore, the root means squar

... Show More
Scopus (26)
Crossref (27)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
International Journal Of Hydrogen Energy
Improvement of photofermentative biohydrogen production using pre-treated brewery wastewater with banana peels waste
...Show More Authors

View Publication
Scopus (65)
Crossref (64)
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
Biosynthesis, Characterization, Adsorption and Antimicrobial studies of Vanadium Oxide Nanoparticles Using Punica Granatum Extract
...Show More Authors

This study includes using green or biosynthesis-friendly technology, which is effective in terms of low cost and low time and energy to prepare V2O5NPs nanoparticles from vanadium sulfate VSO4.H2O using aqueous extract of Punica Granatum at a concentration of 0.1M and with a basic medium PH= 8-12. The V2O5NPs nanoparticles were diagnosed using several techniques, such as FT-IR, UV-visible with energy gap Eg = 3.734eV, and the X-Ray diffraction XRD was calculated using the Debye Scherrer equation. It was discovered to be 34.39nm, Scanning Electron Microscope (SEM), Transmission Electron Microscopy TEM. The size, structure, and composition of synthetic V2O5

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (6)
Scopus Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Study of vegetation cover distribution using DVI, PVI, WDVI indices with 2D-space plot
...Show More Authors

View Publication
Scopus (38)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Fri May 01 2020
Journal Name
Environmental Technology & Innovation
Environmental remediation of synthetic leachate produced from sanitary landfills using low-cost composite sorbent
...Show More Authors

Scopus (37)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Biosynthesis, Characterization, Adsorption and Antimicrobial studies of Manganese oxide Nanoparticles Using Punica Granatum Extract
...Show More Authors

Manganese sulfate and Punica granatum plant extract were used to create MnO2 nanoparticles, which were then characterized using techniques like Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The crystal's size was calculated to be 30.94nm by employing the Debye Scherrer equation in X-ray diffraction. MnO2 NPs were shown to be effective in adsorbing M(II) = Co, Ni, and Cu ions, proving that all three metal ions may be removed from water in one go. Ni(II) has a higher adsorption rate throughout the board. Co, Ni, and Cu ion removal efficiencie

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (7)
Scopus Crossref