The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Transformers (BERT), and FastText embeddings follows our approach, which comprises exhaustive preprocessing operations including stemming, stopword deletion, and ways to address class imbalance. Training and evaluation of the hybrid BiLSTM-CNN model on several benchmark datasets, including SDG-labeled corpora and relevant external datasets like GoEmotion and Ohsumed, help provide a complete assessment of the model’s generalizability. Moreover, this study utilizes zero-shot prompt-based categorization using GPT-3.5/4 and Flan-T5, thereby providing a comprehensive benchmark against current approaches and doing comparative tests using leading models such as Robustly Optimized BERT Pretraining Approach (RoBERTa) and Decoding-enhanced BERT with Disentangled Attention (DeBERTa). Experimental results show that the proposed hybrid model achieves competitive performance due to contextual embeddings, which greatly improve classification accuracy. The study explains model decision processes and improves openness using interpretability techniques, including SHapley Additive exPlanations (SHAP) analysis and attention visualization. These results emphasize the need to incorporate rapid engineering techniques alongside deep learning architectures for effective and interpretable SDG text categorization. With possible effects on more general uses in policy analysis and scientific literature mining, this work offers a scalable and transparent solution for automating the evaluation of SDG research.
SummaryBackground: Rotavirus infection is the most commoncause of watery viral diarrhea in children younger than 5 years of age; it is a major cause of childhood morbidity and mortality.Objective:The aim of the study is todetermine the clinical picture, age distribution of patients with rotavirus infection and their maternal educational background.Patients &methods: A total of 202 patients suffering from diarrhea were included in this study, over 6 months period( from 1stof March 2011to 30th of August 2011),in Children Welfare Teaching hospital. History and physical examinationwere carried out, anthropometrics measures were done and plotted on Centers for Disease Control& World Health Organization charts to determine the nut
... Show MoreОдной из активно развивающихся отраслей лексикологии является неология, объект её изучения - новое слово или неологизм. В задачу неологии входит выявление новых слов и новых значений у уже существующих в языке слов, анализ причин и способов их появления, описание факторов, влияющих на появление нового в лексической системе языка, разработка языковой политики в отношении новых номинаций. Лексикограф
... Show MoreThis research deals with a very important subject as it tries to change the theoretical and scientific heritage and some professional rules adopted in the newsroom. Most media students have difficulties in writing news for press correctly. The researcher tries to identify the compatibility of what is published in local news agencies with professional and academic standards.
The research finds detailed editorial rules for a number of news formats which will play an important role in writing news for press easily, especially for the beginners and newcomers. Also, it discovers a new fact denying the beliefs of some researchers and writers in not having news conclusion in news edited according to the inverted pyramid pattern.
The re
Cressa cretica (Shuwwayl) is a halophytic that belongs to Convolvulaceae, naturally grown in the Middle East including Iraq. Traditionally the plant is used as a paste for sore treatment, also it is used for fever, jaundice, and other illness. Regarding nonclinical use it is used as goat, sheep, and camel feed also as an oil source. Flavonoids including quercetin, kamepferol, apigenin, and their glycosides, phenolic acid as chlorogenic acid, and phytosterols mainly ?–sitosterol were the most important phytochemicals that were detected in this halophyte. Crude ethanolic, methanolic extracts and ethyl acetate fraction of the areal parts were used in clinical studies and demonstrated various effe
... Show MoreNowadays, it is convenient for us to use a search engine to get our needed information. But sometimes it will misunderstand the information because of the different media reports. The Recommender System (RS) is popular to use for every business since it can provide information for users that will attract more revenues for companies. But also, sometimes the system will recommend unneeded information for users. Because of this, this paper provided an architecture of a recommender system that could base on user-oriented preference. This system is called UOP-RS. To make the UOP-RS significantly, this paper focused on movie theatre information and collect the movie database from the IMDb website that provides informatio
... Show MoreThis study investigated the cubic intuitionistic fuzzy set of TM-algebra as a generalization of the cubic set. First, a cubic intuitionistic ideal and a cubic intuitionistic T-ideal are defined, followed by a discussion of their properties. Furthermore, the level set of a cubic intuitionistic TM-algebra is defined, and the relationship between a cubic intuitionistic level set and the cubic intuitionistic T-ideal is established. A novel definition of a cubic intuitionistic set under homomorphism is proposed, and several significant results are demonstrated.
Interface bonding between asphalt layers has been a topic of international investigation over the last thirty years. In this condition, a number of researchers have made their own techniques and used them to examine the characteristics of pavement interfaces. It is obvious that test findings won't always be comparable to the lack of a globally standard methodology for interface bonding. Also, several kinds of research have shown that factors like temperature, loading conditions, materials, and others have an impact on surface qualities. This study aims to solve this problem by thoroughly investigating interface bond testing that might serve as a basis for a uniform strategy. First, a general explanation of how the bonding strength
... Show MoreSeveral Intrusion Detection Systems (IDS) have been proposed in the current decade. Most datasets which associate with intrusion detection dataset suffer from an imbalance class problem. This problem limits the performance of classifier for minority classes. This paper has presented a novel class imbalance processing technology for large scale multiclass dataset, referred to as BMCD. Our algorithm is based on adapting the Synthetic Minority Over-Sampling Technique (SMOTE) with multiclass dataset to improve the detection rate of minority classes while ensuring efficiency. In this work we have been combined five individual CICIDS2017 dataset to create one multiclass dataset which contains several types of attacks. To prove the eff
... Show More