The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Transformers (BERT), and FastText embeddings follows our approach, which comprises exhaustive preprocessing operations including stemming, stopword deletion, and ways to address class imbalance. Training and evaluation of the hybrid BiLSTM-CNN model on several benchmark datasets, including SDG-labeled corpora and relevant external datasets like GoEmotion and Ohsumed, help provide a complete assessment of the model’s generalizability. Moreover, this study utilizes zero-shot prompt-based categorization using GPT-3.5/4 and Flan-T5, thereby providing a comprehensive benchmark against current approaches and doing comparative tests using leading models such as Robustly Optimized BERT Pretraining Approach (RoBERTa) and Decoding-enhanced BERT with Disentangled Attention (DeBERTa). Experimental results show that the proposed hybrid model achieves competitive performance due to contextual embeddings, which greatly improve classification accuracy. The study explains model decision processes and improves openness using interpretability techniques, including SHapley Additive exPlanations (SHAP) analysis and attention visualization. These results emphasize the need to incorporate rapid engineering techniques alongside deep learning architectures for effective and interpretable SDG text categorization. With possible effects on more general uses in policy analysis and scientific literature mining, this work offers a scalable and transparent solution for automating the evaluation of SDG research.
This manuscript presents several applications for solving special kinds of ordinary and partial differential equations using iteration methods such as Adomian decomposition method (ADM), Variation iterative method (VIM) and Taylor series method. These methods can be applied as well as to solve nonperturbed problems and 3rd order parabolic PDEs with variable coefficient. Moreover, we compare the results using ADM, VIM and Taylor series method. These methods are a commination of the two initial conditions.
The main objectives of this research is to extract essential oil from: orange ( citrus sinensis), lemon( citrus limon) and mandarin( citrus reticulata) peels by two methods: steam distillation (SD) and microwave assisted steam distillation (MASD), study the effect of extraction conditions (weight of the sample, extraction time, and microwave power, citrus peel type) on oil yield and compare the results of the two methods, the resulting essential oil was analyzed by Gas Chromatography (GC).
Essential oils are highly concentrated substances used for their flavor and therapeutic or odoriferous properties, in a wide selection of products such as foods, medicines and cosmetics. Extracti
... Show MoreThe aim of this paper is to present a method for solving high order ordinary differential equations with two point's boundary condition, we propose semi-analytic technique using two-point oscillatory interpolation to construct polynomial solution. The original problem is concerned using two-point oscillatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by comparing with conventional methods.
One of the most Interesting natural phenomena is clouds that have a very strong effect on the climate, weather and the earth's energy balance. Also clouds consider the key regulator for the average temperature of the plant. In this research monitoring and studying the cloud cover to know the clouds types and whether they are rainy or not rainy using visible and infrared satellite images. In order to interpret and know the types of the clouds visually without using any techniques, by comparing between the brightness and the shape of clouds in the same area for both the visible and infrared satellite images, where the differences in the contrasts of visible image are the albedo differences, while in the infrared images is the temperature d
... Show MoreRadio observations from astronomical sources like supernovae became one the most important sources of information about the physical properties of those objects. However, such radio observations are affected by various types of noise such as those from sky, background, receiver, and the system itself. Therefore, it is essential to eliminate or reduce these undesired noise from the signals in order to ensure accurate measurements and analysis of radio observations. One of the most commonly used methods for reducing the noise is to use a noise calibrator. In this study, the 3-m Baghdad University Radio Telescope (BURT) has been used to observe crab nebula with and without using a calibration unit in order to investigate its impact on the sign
... Show MoreThe hydroisomerization of n-decane was studied on SAPO-11 catalyst. Catalyst of 0.25wt.%Pt/SAPO-11 was prepared locally and used in the present work. The hydroconversion performed in a continuous fixed-bed laboratory reaction unit. Experiments of n-decane isomerization were performed in a temperature range of 200 to 275°C,LHSV range of 0.5-2 h-1, and hydrogen to decane mole ratio of 2.1-8.2. The results show that the n-decane conversion increases with increasing temperature and decreasing LHSV , the maximum conversion 56.77 % was achieved at temperature 275°C and LHSV of 0.5 h-1. The kinetic of n-decane isomerization was also studied and the reaction was first order. The kinetic analysis also showed that the
... Show MoreIn this study, the effect of pumping power on the conversion efficiency of nonlinear crystal (KTP) was investigated using laser pump-power technique. The results showed that the higher the pumping power values, the greater the conversion efficiency (η) and, as the crystal thickness increases within limitations, the energy conversion efficiency increases at delay time of (0.333 ns) and at room temperature. Efficiency of 80% at length of KTP crystal (L = 1.75 X 10-3 m) and Pin = 28MW, and also, compare the experimental results with numerical results by using MATLAB program.
Coffee bean contains bioactive compounds including caffeine and chlorogenic acid (CGA) that have a stimulant effect and are used for combating fatigue and drowsiness, and enhancing alertness. However, when the coffee bean was processed in the form of green coffee bean (GCB) extract, it has an unpleasant flavour and limitations instability, activity, and bioavailability. This study aimed to produce microcapsules of the GCB (Coffea canephora) ethanolic extract containing considerable amounts of the bioactive compounds for nutraceutical supplements. The GCB ethanolic extract was microencapsulated by spray drying using a whey protein concentrate (WPC) biopolimer. The particle size (PSA), morphology (SEM), and physicochemical charact
... Show MoreTwelve samples of cigarettes have been collected from local markets of different types and origins by using (HPGe) detector, and measurement of the specific activity for series U238 and series Th232 in addition to K40 in order to estimate the health risk of cigarettes their by smokers, the results shown that highest specific activity value were be (12. 8±6. 3 Bq/kg, 8. 41±5. 8 Bq/kg, 125. 16±58. 3 Bq/kg), respectively, in the sample (MAC) MacBeth type cigarettes in Brazilian origin, this paper reports data such as (specific activity of K40, series U238, series Th232