The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Transformers (BERT), and FastText embeddings follows our approach, which comprises exhaustive preprocessing operations including stemming, stopword deletion, and ways to address class imbalance. Training and evaluation of the hybrid BiLSTM-CNN model on several benchmark datasets, including SDG-labeled corpora and relevant external datasets like GoEmotion and Ohsumed, help provide a complete assessment of the model’s generalizability. Moreover, this study utilizes zero-shot prompt-based categorization using GPT-3.5/4 and Flan-T5, thereby providing a comprehensive benchmark against current approaches and doing comparative tests using leading models such as Robustly Optimized BERT Pretraining Approach (RoBERTa) and Decoding-enhanced BERT with Disentangled Attention (DeBERTa). Experimental results show that the proposed hybrid model achieves competitive performance due to contextual embeddings, which greatly improve classification accuracy. The study explains model decision processes and improves openness using interpretability techniques, including SHapley Additive exPlanations (SHAP) analysis and attention visualization. These results emphasize the need to incorporate rapid engineering techniques alongside deep learning architectures for effective and interpretable SDG text categorization. With possible effects on more general uses in policy analysis and scientific literature mining, this work offers a scalable and transparent solution for automating the evaluation of SDG research.
The Present study investigated the drought in Iraq, by using the rainfall data which obtained from 39 meteorological stations for the past 30 years (1980-2010). The drought coefficient calculated on basis of the standard precipitation index (SPI) and then characteristics of drought magnitude, duration and intensity were analyzed. The correlation and regression between magnitude and duration of drought were obtained according the (SPI) index. The result shows that drought magnitude values were greater in the northeast region of Iraq.
The effect of the initial pressure upon the laminar flame speed, for a methane-air mixtures, has been detected paractically, for a wide range of equivalence ratio. In this work, a measurement system is designed in order to measure the laminar flame speed using a constant volume method with a thermocouples technique. The laminar burning velocity is measured, by using the density ratio method. The comparison of the present work results and the previous ones show good agreement between them. This indicates that the measurements and the calculations employed in the present work are successful and precise
Abstract
Black paint laser peening (bPLP) technique is currently applied for many engineering materials , especially for aluminum alloys due to high improvement in fatigue life and strength . Constant and variable bending fatigue tests have been performed at RT and stress ratio R= -1 . The results of the present work observed that the significance of the surface work hardening which generated high negative residual stresses in bPLP specimens .The fatigue life improvement factor (FLIF) for bPLP constant fatigue behavior was from 2.543 to 3.3 compared to untreated fatigue and the increase in fatigue strength at 107 cycle was 21% . The bPLP cumulative fatigue life behav
... Show MoreThe Gaussian orthogonal ensemble (GOE) version of the random matrix theory (RMT) has been used to study the level density following up the proton interaction with 44Ca, 48Ti and 56Fe.
A promising analysis method has been implemented based on the available data of the resonance spacing, where widths are associated with Porter Thomas distribution. The calculated level density for the compound nuclei 45Sc,49Vand 57Co shows a parity and spin dependence, where for Sc a discrepancy in level density distinguished from this analysis probably due to the spin misassignment .The present results show an acceptable agreement with the combinatorial method of level density.
... Show MoreThis article aim to estimate the Return Stock Rate of the private banking sector, with two banks, by adopting a Partial Linear Model based on the Arbitrage Pricing Model (APT) theory, using Wavelet and Kernel Smoothers. The results have proved that the wavelet method is the best. Also, the results of the market portfolio impact and inflation rate have proved an adversely effectiveness on the rate of return, and direct impact of the money supply.
An investigation was conducted effect of addition co- solvent on solvent extraction process for two types of a lubricating oil fraction (spindle) and (SAE-30) obtained from vacuum distillation unit of lube oil plant of Daura Refinery. In this study two types of co-solvents ( formamide and N-methyl, 2, pyrrolidone) were blended with furfural to extract aromatic hydrocarbons which are the undesirable materials in raw lubricating oil, in order to improve the viscosity index, viscosity and yield of produced lubricating oil. The studied operating condition are extraction temperature range from 70 to 110 °C for formamide and 80 to 120 °C for N-methyl, 2, pyrrolidone, solvent to oil ratio range from 1:1 to 2:1 (wt./wt.) for furfural with form
... Show MoreCloud storage provides scalable and low cost resources featuring economies of scale based on cross-user architecture. As the amount of data outsourced grows explosively, data deduplication, a technique that eliminates data redundancy, becomes essential. The most important cloud service is data storage. In order to protect the privacy of data owner, data are stored in cloud in an encrypted form. However, encrypted data introduce new challenges for cloud data deduplication, which becomes crucial for data storage. Traditional deduplication schemes cannot work on encrypted data. Existing solutions of encrypted data deduplication suffer from security weakness. This paper proposes a combined compressive sensing and video deduplication to maximize
... Show MoreThe corrosion behavior of carbon steel at different temperatures 100,120,140 and 160 Cͦ under different pressures 7,10 and 13 bar in pure distilled water and after adding three types of oxygen scavengers Hydroquinone, Ascorbic acid and Monoethanolamine in different concentrations 40,60 and 80 ppm has been investigated using weight loss method. The carbon steel specimens were immersed in water containing 8.2 ppm dissolved oxygen (DO) by using autoclave. It was found that corrosion behavior of carbon steel was greatly influenced by temperature with high pressure. The corrosion rate decreases, when adding any one of oxygen scavengers. The best results were obtained at a concentration of 80 ppm of each scavenger. It was observed that
... Show More
