In this work, the Whittaker wave functions were used to study the nuclear density distributions and elastic electron scattering charge form factors for proton-rich nuclei and their corresponding stable nuclei (10,8B, 13,9C, 14,12N and 19,17F). The parameters of Whittaker’s basis were fixed to generate the experimental values of available size radii. The Whittaker basis was connected to harmonic-oscillator basis through boundary condition at match point. The nuclear shell model was opted with pure configuration for all studied nuclei to compute aforementioned studied quantities except 10B. For 10B, the total spin is 3+, therefore, there is a C2 component in empirical Coulomb form factor in addition to C0 component. The theory of core-polarization was applied to account such C2 contribution using Tassie, Bohr-Mottelson and valence models. The contribution of model space to C2 component was computed using Cohen-Kurath interaction. For exotic 8B, 9C, 12N and 17F nuclei, the Whittaker’s basis was applied only to the last exotic valence proton, on contrary to stable 10B, 13C, 14N and 19F which the Whittaker’s basis was applied to both last stable valence proton and neutron . It was seen that such treatment highly improved the calculated quantities in comparison with empirical data.