This study concerns the removal of a trihydrate antibiotic (Amoxicillin) from synthetically contaminated water by adsorption on modified bentonite. The bentonite was modified using hexadecyl trimethyl ammonium bromide (HTAB), which turned it from a hydrophilic to a hydrophobic material. The effects of different parameters were studied in batch experiments. These parameters were contact time, solution pH, agitation speed, initial concentration (C0) of the contaminant, and adsorbent dosage. Maximum removal of amoxicillin (93 %) was achieved at contact time = 240 min, pH = 10, agitation speed = 200 rpm, initial concentration = 30 ppm, and adsorbent dosage = 3 g bentonite per 1L of pollutant solution. The characterization of the adsorbent, modified bentonite, was accomplished using Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller. The isotherm models were also investigated, and it was found that the Freundlich isotherm model fitted well with the experimental data (R2 = 94.77), which suggests heterogeneity in the multilayer adsorption of amoxicillin onto modified bentonite. The kinetics of the adsorption process were studied. The experimental data were found to obey the pseudo-first-order kinetic model (R2 = 95.1). Thermodynamic studies indicated that the adsorption process was physisorption and endothermic. Finally, the modified bentonite proved to be a good adsorbent for the removal of amoxicillin from contaminated solutions.
Density Functional Theory at the generalized-gradient approximation level coupled with large unit cell method is used to simulate the electronic structure of (II-VI) zinc-blende cadmium sulfide nanocrystals that have dimensions 2-2.5 nm. The calculated properties include lattice constant, conduction and valence bands width, energy of the highest occupied orbital, energy of the lowest unoccupied orbital, energy gap, density of states etc. Results show that lattice constant and energy gap converge to definite values. However, highest occupied orbital, lowest unoccupied orbital fluctuates indefinitely depending on the shape of the nanocrystal.
The sustainable competitive advantage for organizations is one of the requirements for value creation, which centered on the possession of scarce resources that achieve maximum flows to invest in intellectual capital, if what has been interest in them, measured and employed the way properly and style, so I figured the need for new technologies to enable organizations to measure the intellectual and physical assets and to assess its performance accordingly, so it sheds search light on the measurement of the added value of existing knowledge using the standard value-added factor is the intellectual (value added intellectual coefficient) (VAIC) and to develop a set of assumptions about the extent of the difference between the sample
... Show MoreBackground: Alginate impression material is the irreversible hydrocolloid material that is widely used in dentistry. The contact time between alginate and gypsum cast could have a detrimental effect on the properties of the gypsum cast. The objective of this study is to evaluate the impact of various contact time intervals of Alginate impressions & type III dental stone on surface properties of stone cast. Materials and Methods: Time intervals tested were 1hour, 6 hours and 9 hours. Surface properties of stone cast evaluated were surface detail reproduction, hardness and roughness. Surface detail reproduction was determined using cylindrical brass test block in accordance with ISO 1563. Surface roughness was measured by profilometer
... Show MoreResulted in scientific and technological developments to the emergence of changes in the educational process and methods of teaching modern formats commensurate with the level of mental retardation. Which called for educational institutions, including the University of Baghdad / College of Fine Arts to urge and guide researchers to study and follow-up of recent developments in the educational process in order to develop in the fine arts in general and technical education in particular being play an important role in achieving educational goals. The educational methods of modern educational require effort-intensive and advanced for the development of technical skills among students, and thus worked researcher to employ computer technology
... Show MoreBackground: Acrylic resin polymer s used in prosthodontic treatment as a denture base material for several decades. Separation and debonding of artificial teeth from denture bases present a laboratory and clinical problem affect patient and dentist. The aim of this study is to evaluate the effect of oxygen plasma and argon plasma treatment of acrylic teeth and thermocycling on bonding strength to hot cured acrylic resin denture base material. Materials and Methods: Sixty denture teeth (right maxillary central incisor) are selected. The denture teeth are waxed onto the beveled surface of rectangular wax block according to Japanese standard for artificial teeth. The control group consisted of 20 denture teeth specimen without any treatment.
... Show MoreBackground: The most widely used material for fabrication of denture base is poly methyl methacrylate, despite its popularity, the main problems associated with it as a denture base material are poor strength particularly under fatigue failure inside the patient mouth, impact failure outside the patient mouth, which are the main causes for fracture of denture, several studies was done to increase mechanical properties of denture base. The present study was conducted to evaluate and compare the effect of addition single walled carbon nanotubes in different concentrations to polymethyl methacrylate on some mechanical properties (surface hardness, surface roughness, impact strength and transverse strength). Materials and methods: Forty eight
... Show More
ABSTRACT Background: resin cement type and intraoral temperature fluctuations may affect the fracture performance of successful zirconia restorations. To fill this gap, the purpose of this study is to evaluate and compare the influence of thermocycling on fracture resistance and mode of failure of monolithic zirconia crowns luted with Rely X™ U200 and BreezeTMself-adhesive resin cements as well as imply the effect of adding 2 % of polylysine (PLS) to these cements. Materials: 64 maxillary premolars were milled out of zirconia blocks using CAD/CAM milling system. They were divided into four groups (n = 16) according to the cement type. Four different resin cements were used (RelyXTMU200, Breeze™, RelyX™ U200 with 2 % PLS
... Show More