A non-zero submodule N of M is called essential if N L for each non-zero submodule L of M. And a non-zero submodule K of M is called semi-essential if K P for each non-zero prime submodule P of M. In this paper we investigate a class of submodules that lies between essential submodules and semi-essential submodules, we call these class of submodules weak essential submodules.
Ferritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m
... Show MoreIn the beta decay process, a neutron converts into a proton, or vice versa, so the atom in this process changes to a more stable isobar. Bethe-Weizsäcker used a quasi-experimental formula in the present study to find the most stable isobar for isobaric groups of mass nuclides (A=165-175). In a group of isobars, there are two methods of calculating the most stable isobar. The most stable isobar represents the lowest parabola value by calculating the binding energy value (B.E) for each nuclide in this family, and then drawing these binding energy values as a function of the atomic number (Z) in order to obtain the mass parabolas, the second method is by calculating the atomic number value of the most stable isobar (ZA). The results show
... Show MoreThe Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreThe Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solution
... Show MoreIn this paper, we generalized the principle of Banach contractive to the relative formula and then used this formula to prove that the set valued mapping has a fixed point in a complete partial metric space. We also showed that the set-valued mapping can have a fixed point in a complete partial metric space without satisfying the contraction condition. Additionally, we justified an example for our proof.
Tensile strength is a critical property of Hot Mix Asphalt (HMA) pavements and is closely related to distresses such as fatigue cracking. This study aims to evaluate methods for assessing fatigue cracking in Asphalt Concrete (AC) mixes. In order to achieve optimum density at different binder contents, the mixes were compressed using a gyratory compactor. Tensile strength was assessed using the Indirect Tensile (IDT) and Semi-Circular Bend (SCB) tests. The results showed that the tensile strength measured by the SCB test was consistently higher than that measured by the IDT test at 25 °C. In addition, the SCB test showed a stronger correlation between increasing binder content and tensile strength. For binder contents ranging from 4
... Show MoreLet be a prime ring, be a non-zero ideal of and be automorphism on. A mapping is called a multiplicative (generalized) reverse derivation if where is any map (not necessarily additive). In this paper, we proved the commutativity of a prime ring R admitting a multiplicative (generalized) reverse derivation satisfying any one of the properties:
for all x, y
The purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .
In this paper, we introduce the concepts of higher reverse left (resp.right) centralizer, Jordan higher reverse left (resp. right) centralizer, and Jordan triple higher reverse left (resp. right) centralizer of G-rings. We prove that every Jordan higher reverse left (resp. right) centralizer of a 2-torsion free prime G-ring M is a higher reverse left (resp. right) centralizer of M.
We develop the previously published results of Arab by using the function under certain conditions and using G-α-general admissible and triangular α-general admissible to prove coincidence fixed point and common fixed point theorems for two weakly compatible self –mappings in complete b-metric spaces.