Preferred Language
Articles
/
9Bew5I8BVTCNdQwCVn-K
Copy Move Image Forgery Detection using Multi-Level Local Binary Pattern Algorithm

Digital image manipulation has become increasingly prevalent due to the widespread availability of sophisticated image editing tools. In copy-move forgery, a portion of an image is copied and pasted into another area within the same image. The proposed methodology begins with extracting the image's Local Binary Pattern (LBP) algorithm features. Two main statistical functions, Stander Deviation (STD) and Angler Second Moment (ASM), are computed for each LBP feature, capturing additional statistical information about the local textures. Next, a multi-level LBP feature selection is applied to select the most relevant features. This process involves performing LBP computation at multiple scales or levels, capturing textures at different resolutions. By considering features from multiple levels, the detection algorithm can better capture both global and local characteristics of the manipulated regions, enhancing the accuracy of forgery detection. To achieve a high accuracy rate, this paper presents a variety of scenarios based on a machine-learning approach. In Copy-Move detection, artifacts and their properties are used as image features and support Vector Machine (SVM) to determine whether an image is tampered with. The dataset is manipulated to train and test each classifier; the target is to learn the discriminative patterns that detect instances of copy-move forgery. Media Integration and Call Center Forgery (MICC-F2000) were utilized in this paper. Experimental evaluations demonstrate the effectiveness of the proposed methodology in detecting copy-move. The implementation phases in the proposed work have produced encouraging outcomes. In the case of the best-implemented scenario involving multiple trials, the detection stage achieved a copy-move accuracy of 97.8 %. 

Crossref
Publication Date
Mon Oct 28 2019
Journal Name
Iraqi Journal Of Science
Improved VSM Based Candidate Retrieval Model for Detecting External Textual Plagiarism

A rapid growth has occurred for the act of plagiarism with the aid of Internet explosive growth wherein a massive volume of information offered with effortless use and access makes plagiarism  the process of taking someone else’s work (represented by ideas, or even words) and representing it as other's own work  easy to be performed. For ensuring originality, detecting plagiarism has been massively necessitated in various areas so that the people who aim to plagiarize ought to offer considerable effort for introducing works centered on their research.

     In this paper, work has been proposed for improving the detection of textual plagiarism through proposing a model for can

... Show More
Scopus (4)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Designing Primers with a Plant Signal Peptide to Enhance the Expression of GBA1 in Transgenic Soybean Plants

Transgenic plants offer advantages for the manufacture of recombinant proteins with terminal
mannose residues on their glycan chains. So plants are chosen as source of pharmaceutical products and for
the development of alternative expression systems to produce recombinant lysosomal enzymes. In the
present study the sequence of the natural cDNA encoding for the human lysosomal enzyme
glucocerebrosidase (GCD) was modified to enhance its expression in soybean plants. The glucocerebrosidase
gene signal peptide was substituted with that signal peptide for the Arabidopsis thaliana basic endochitinase
gene to support the co-translational translocation into the endoplasmic reticulum (ER), and the storage
vacuol

... Show More
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Jul 01 2014
Journal Name
International Journal Of Artificial Intelligence And Mechatronics
Building a Three-Axis CNC Milling Machine Control System

CNC machines are widely used in production fields since they produce similar parts in a minimum time, at higher speed and with possibly minimum error. A control system is designed, implemented and tested to control the operation of a laboratory CNC milling machine having three axes that are moved by using a stepper motor attached to each axis. The control system includes two parts, hardware part and software part, the hardware part used a PC (works as controller) connected to the CNC machine through its parallel port by using designed interface circuit. The software part includes the algorithms needed to control the CNC. The sample needs to be machined is drawn by using one of the drawing software like AUTOCAD or 3D MAX and is saved in a we

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 15 2023
Journal Name
Iraqi Journal Of Science
Best Way to Detect Breast Cancer by UsingMachine Learning Algorithms

Breast cancer is the second deadliest disease infected women worldwide. For this
reason the early detection is one of the most essential stop to overcomeit dependingon
automatic devices like artificial intelligent. Medical applications of machine learning
algorithmsare mostly based on their ability to handle classification problems,
including classifications of illnesses or to estimate prognosis. Before machine
learningis applied for diagnosis, it must be trained first. The research methodology
which isdetermines differentofmachine learning algorithms,such as Random tree,
ID3, CART, SMO, C4.5 and Naive Bayesto finds the best training algorithm result.
The contribution of this research is test the data set with mis

... Show More
View Publication Preview PDF
Publication Date
Wed Apr 05 2023
Journal Name
Journal Of Engineering
The Behavior of Gypseous Soil under Vertical Vibration Loading

The dynamic response of foundation rest on collapsible soil in dry and soaked states is studied through wide experimental programmed. Gypseous soil from Tikrit governorate area was obtained and subjected to various physical and chemical analysis to determine its properties. Steel rectangular footing (400x200x20) mm is manufactured. The machine is fitted to the footing, then the model machine foundation is placed centrally over the prepared soil layer in steel container (1200x 1000x1000)mm with proper care to maintain the center of gravity of whole system lie in the same vertical line with container.Then, the footing is subjected to vertical harmonic loading using a rotating mass type mechanical oscillator to simulate different dynamic lo

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Text Classification Based on Weighted Extreme Learning Machine

The huge amount of documents in the internet led to the rapid need of text classification (TC). TC is used to organize these text documents. In this research paper, a new model is based on Extreme Machine learning (EML) is used. The proposed model consists of many phases including: preprocessing, feature extraction, Multiple Linear Regression (MLR) and ELM. The basic idea of the proposed model is built upon the calculation of feature weights by using MLR. These feature weights with the extracted features introduced as an input to the ELM that produced weighted Extreme Learning Machine (WELM). The results showed   a great competence of the proposed WELM compared to the ELM. 

Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Fri Sep 16 2016
Journal Name
Journal Of Earthquake Engineering
Dynamic Response of Saturated Soil - Foundation System Acted upon by Vibration

In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. In order to investigate the response of soil and footing to steady state dynamic loading, a physical model was manufactured to simulate steady state harmonic load at different operating frequencies. Total of 84 physical models were performed. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were tested at the surface and at 50 mm depth below model surface. Meanwhile the investigated parameters of the soil condition include dry and saturated sand for two relative densities 30% and 80%. The response of the footing was ela

... Show More
Crossref (25)
Crossref
View Publication
Publication Date
Wed Jan 13 2021
Journal Name
Iraqi Journal Of Science
Modern Probabilistic Model: Filtering Massive Data in E-learning

So muchinformation keeps on being digitized and stored in several forms, web pages, scientific articles, books, etc. so the mission of discovering information has become more and more challenging. The requirement for new IT devices to retrieve and arrange these vastamounts of informationaregrowing step by step. Furthermore, platforms of e-learning are developing to meet the intended needsof students.
The aim of this article is to utilize machine learning to determine the appropriate actions that support the learning procedure and the Latent Dirichlet Allocation (LDA) so as to find the topics contained in the connections proposed in a learning session. Ourpurpose is also to introduce a course which moves toward the student's attempts a

... Show More
Scopus (2)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Jan 13 2021
Journal Name
Iraqi Journal Of Science
The Use of Predictive Analyzes for University Dropout Cases

We will also derive practical solutions using predictive analytics. And this would include application making predictions with real world example from University of Faculty of Chariaa of Fez. As soon as student enrolled to the university, they will certainly encounter many difficulties and problems which discourage their motivation towards their courses and which pushes them to leave their university.
The aim of our article is to manage an investigation of the issue of dropping out their studies. This investigation actively integrates the benefits ofmachine learning. Hence, we will concentrate on two fundamental strategies which are KNN, which depends on the idea of likeness among data; and the famous strategy SVM, which can break the

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Network Traffic Prediction Based on Boosting Learning

Classification of network traffic is an important topic for network management, traffic routing, safe traffic discrimination, and better service delivery. Traffic examination is the entire process of examining traffic data, from intercepting traffic data to discovering patterns, relationships, misconfigurations, and anomalies in a network. Between them, traffic classification is a sub-domain of this field, the purpose of which is to classify network traffic into predefined classes such as usual or abnormal traffic and application type. Most Internet applications encrypt data during traffic, and classifying encrypted data during traffic is not possible with traditional methods. Statistical and intelligence methods can find and model traff

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF