In a world where tourism has become the leading industry on the market, sustainable tourism has found its place and is becoming a major player in the network of traveling Internet users. Hospitality, solidarity and conviviality are essential are giving meaning to sharing. This “extra soul” has the capacity to enrich moments, places, attractions and heritage. Archaeological heritage sites constitute an important factor for the economic and social life of a large number of countries, the development policy came to emphasize the safeguard and the preservation of landscapes and natural or man-made sites, against the attacks which have impoverished the cultural heritage, this heritage which represents a historic imprint for future generations. Archaeological sites exert major tourist attractions. Successfully managed cultural tourism can capture the appeal of archaeological heritage and generate significant funds which will then be used to finance studies, conservation, maintenance and the presentation of this heritage to the public. This is how tourism has become, according to the World Tourism Organization (UNWTO), the world’s leading industry. Algeria contains archaeological sites which are classified as world cultural heritage by UNESCO. Unfortunately, reality shows that most of these sites are left to deteriorate without any real intervention. It is important to point out the importance of putting in place a work plan aimed at developing tourism that preserves archaeological sites considering social, environmental, cultural dimensions, etc. We will conduct this analysis based on a problem built around this main question: How to preserve our cultural heritage to achieve sustainable tourism? Through this research work, it is a question of examining the problem of integrating the conservation and enhancement of archaeological sites in the context of producing sustainable tourism for the city of Annaba and for Algeria. a global way.
نحو تعزيز المشاركة السياسية للطالبات الجامعيات الفلسطينيات
Albizia lebbeck biomass was used as an adsorbent material in the present study to remove methyl red dye from an aqueous solution. A central composite rotatable design model was used to predict the dye removal efficiency. The optimization was accomplished under a temperature and mixing control system (37?C) with different particle size of 300 and 600 ?m. Highest adsorption efficiencies were obtained at lower dye concentrations and lower weight of adsorbent. The adsorption time, more than 48 h, was found to have a negative effect on the removal efficiency due to secondary metabolites compounds. However, the adsorption time was found to have a positive effect at high dye concentrations and high adsorbent weight. The colour removal effi
... Show MoreBackground:-Osteoarthritis (OA) is the most common form of arthritis and the leading source of physical disability in elderly people. The Prevalence of OA is increasing and will continue to do so as the population gets older. The OA is predominantly managed in primary care centers by primary health care physicians and much can be done to alleviate symptoms from osteoarthritis by combinations of therapeutic options including pharmacological and non-pharmacological treatments.
Objectives of study :- To assess the knowledge, attitude and practice of Iraqi PHCC physicians in Baghdad, AL-Rusafa, regarding the management of osteoarthritis patient, and it's association with sociodemogra
... Show MoreThe synthesized ligand [4-chloro-5-(N-(5,5-dimethyl-3-oxocyclohex-1-en-1-yl)sulfamoyl)-2-((furan-2-ylmethyl)amino)benzoic acid] (H2L1) was identified utilizing Fourier transform infrared spectroscopy (FT-IR), 1 H, 13 C – NMR, (C.H.N), Mass spectra, UVVis methods based on spectroscopy. To detect mixed ligand complexes, analytical and spectroscopic approaches such as micro-analysis, conductance, UV-Visible, magnetic susceptibility, and FT-IR spectra were utilized. Its mixed ligand complexes [M(L1)(Q)Cl2] [ where M= Co(II), Ni(II) , and Cd(II)] and complexes [Pd(L1)(Q)] and [Pt(L1)(Q)Cl2]; [H2L1] =β-enaminone ligand =L1 and Q= 8-Hydroxyquinoline = L2]. The results showed that the complexes were synthesised utilizing the molar ratio M: L1
... Show MoreA new methodology was applied to the synthesis of new imidazolones and oxyazepine derivatives containing imidazo thiazole fused rings. Starting with 5-(4-bromo phenyl) imidazo (2, 1-b) thiazole, which was synthesized using the standard procedure, the Carbaldehyed group was introduced at position 6 of 5-(4-bromo phenyl) imidazo (2, 1-b) thiazole. Then, this 6-carbaldehyed derivative was condensed with different substituted aromatic amines to afford new Schiff bases. The latter were cyclized into new oxazepine and imidazolone derivatives by using phthalic anhydride and glycine, respectively. These new derivatives were characterized by using FT-IR, 1HHNMR, and 13CNMR spectra, as well as examined (evaluated) for anti-bacterial and anti-fungal a
... Show MoreIt is important to note that Posaconazole (POCZ) is a newly developed extended-spectrum triazole that belongs to BCS class II and has a solubility of less than 1µg/ml. In patients with a weakened immune system, POCZ has been shown to be effective as an antifungal treatment for invasive infections caused by candida and aspergillus species. The nano-micelles technique can be used to increase POCZ solubility. In order to increase their apparent solubility in water, nano-micelles are made by combining macromolecules that self-assemble into ordered structures capable of entrapping hydrophobic drug molecules in the interior domain. Dispersed colloidal systems, of which nano-micelles are a subset, are a large and diverse group. Composed of a p
... Show MoreSynthesis of a new class of Schiff-base ligand with a tetrazole moiety to form polymeric metal complexes with CoII, NiII, ZnII, and CdII ions has been demonstrated. The ligand was synthesised by a multi-steps by treating 5-amino-2-chlorobenzonitrile and cyclohexane -1,3-dione, the 5,5'-(((1E,3E)-cyclohexane-1,3-diylidene)bis(azanylylidene))bis(2-chlorobenzonitrile) was obtained. The precursor (M) was prepared from the reaction 5,5'-(((1E,3E)-cyclohexane-1,3-diylidene)bis(azanylylidene))bis(2-chlorobenzonitrile) with NaN3 to obtained (1E,3E)-N1,N3-bis(4-chloro-3-(1H-tetrazol-5-yl)phenyl)cyclohexane-1,3-diimine (N). By reacting the precursor (M) with CS2
... Show More